PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Optical transparency of an indium-tin-oxide (ITO) thin film depends on its topography. Wrinkling of ITO thin film can reduce normal transmittance or visibility by scattering the incident light away. In this paper, we study topography change of ITO thin film and its effect on normal transmittance of light. Coating of ITO thin film on adhesive poly-acrylate elastomer forms wrinkles and folds when subjected to mechanical compression and surface buckling. At excessive compression, such as 25% equi-biaxial, folds of the ITO thin film are so deep and convoluted like crumpling of a piece of paper. This crumpled form of ITO thin film can well obscure the light passing even though a flat ITO thin film is transparent. Surprisingly, the crumpled ITO thin film remains continuous and conductive even with 25% equi-biaxial compression despite the fact that ITO is known to be brittle. These crumpled ITO thin films were subsequently used to make compliant electrodes for Dielectric elastomer actuator (DEA). These crumpled ITO thin film can be reversibly unfolded through the DEA’s areal expansion. This DEA with 14.2% equi-biaxially crumpled ITO thin films can produce 37% areal expansion and demonstrate an optical transmittance change from 39.14% to 52.08% at 550nm wavelength.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.