Open Access
1 November 2007 Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis
Satoru Kohno, Ichiro Miyai, Akitoshi Seiyama, Ichiro Oda, Akihiro Ishikawa, Shoichi Tsuneishi, Takahi Amita, Koji Shimizu
Author Affiliations +
Abstract
We investigate whether the functional near-infrared spectroscopic (fNIRS) signal includes a signal from the changing skin blood flow. During a locomotor task on a treadmill, changes in the hemodynamic response in the front-parietal area of healthy human subjects are simultaneously recorded using an fNIRS imaging system and a laser Doppler tissue blood flow meter. Independent component analysis (ICA) for fNIRS signals is performed. The skin blood flow changes during locomotor tasks on a treadmill. The activated spatial distribution of one of the components separated by ICA reveals an overall increase in fNIRS channels. To evaluate the uniformity of the activated spatial distribution, we define a new statistical value—the coefficient of spatial uniformity (CSU). The CSU value is a highly discriminating value (e.g., 2.82) compared with values of other components (e.g., 1.41, 1.10, 0.96, 0.61, and 0.58). In addition, the independent component signal corresponding to the activated spatial distribution is similar to changes in skin blood flow measured with the laser Doppler tissue blood flow meter. The coefficient of correlation indicates strong correlation. Localized activation areas around the premotor and medial somatosensory cortices are shown more clearly by eliminating the extracted component.
©(2007) Society of Photo-Optical Instrumentation Engineers (SPIE)
Satoru Kohno, Ichiro Miyai, Akitoshi Seiyama, Ichiro Oda, Akihiro Ishikawa, Shoichi Tsuneishi, Takahi Amita, and Koji Shimizu "Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis," Journal of Biomedical Optics 12(6), 062111 (1 November 2007). https://doi.org/10.1117/1.2814249
Published: 1 November 2007
Lens.org Logo
CITATIONS
Cited by 208 scholarly publications and 7 patents.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Blood circulation

Skin

Independent component analysis

Laser tissue interaction

Doppler effect

Imaging systems

Near infrared spectroscopy

Back to Top