Open Access
13 November 2024 Hyperspectral imaging in neurosurgery: a review of systems, computational methods, and clinical applications
Alankar Kotwal, Vishwanath Saragadam, Joshua D. Bernstock, Alfredo Sandoval, Ashok Veeraraghavan, Pablo A. Valdés
Author Affiliations +
Abstract

Significance

Accurate identification between pathologic (e.g., tumors) and healthy brain tissue is a critical need in neurosurgery. However, conventional surgical adjuncts have significant limitations toward achieving this goal (e.g., image guidance based on pre-operative imaging becomes inaccurate up to 3 cm as surgery proceeds). Hyperspectral imaging (HSI) has emerged as a potential powerful surgical adjunct to enable surgeons to accurately distinguish pathologic from normal tissues.

Aim

We review HSI techniques in neurosurgery; categorize, explain, and summarize their technical and clinical details; and present some promising directions for future work.

Approach

We performed a literature search on HSI methods in neurosurgery focusing on their hardware and implementation details; classification, estimation, and band selection methods; publicly available labeled and unlabeled data; image processing and augmented reality visualization systems; and clinical study conclusions.

Results

We present a detailed review of HSI results in neurosurgery with a discussion of over 25 imaging systems, 45 clinical studies, and 60 computational methods. We first provide a short overview of HSI and the main branches of neurosurgery. Then, we describe in detail the imaging systems, computational methods, and clinical results for HSI using reflectance or fluorescence. Clinical implementations of HSI yield promising results in estimating perfusion and mapping brain function, classifying tumors and healthy tissues (e.g., in fluorescence-guided tumor surgery, detecting infiltrating margins not visible with conventional systems), and detecting epileptogenic regions. Finally, we discuss the advantages and disadvantages of HSI approaches and interesting research directions as a means to encourage future development.

Conclusions

We describe a number of HSI applications across every major branch of neurosurgery. We believe these results demonstrate the potential of HSI as a powerful neurosurgical adjunct as more work continues to enable rapid acquisition with smaller footprints, greater spectral and spatial resolutions, and improved detection.

CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Alankar Kotwal, Vishwanath Saragadam, Joshua D. Bernstock, Alfredo Sandoval, Ashok Veeraraghavan, and Pablo A. Valdés "Hyperspectral imaging in neurosurgery: a review of systems, computational methods, and clinical applications," Journal of Biomedical Optics 30(2), 023512 (13 November 2024). https://doi.org/10.1117/1.JBO.30.2.023512
Received: 1 June 2024; Accepted: 3 October 2024; Published: 13 November 2024
Advertisement
Advertisement
Back to Top