Open Access
27 August 2014 Multiscale vision model for event detection and reconstruction in two-photon imaging data
Alexey R. Brazhe, Claus Mathiesen, Barbara Lind, Andrey Rubin, Martin Lauritzen
Author Affiliations +
Abstract
Reliable detection of calcium waves in multiphoton imaging data is challenging because of the low signal-to-noise ratio and because of the unpredictability of the time and location of these spontaneous events. This paper describes our approach to calcium wave detection and reconstruction based on a modified multiscale vision model, an object detection framework based on the thresholding of wavelet coefficients and hierarchical trees of significant coefficients followed by nonlinear iterative partial object reconstruction, for the analysis of two-photon calcium imaging data. The framework is discussed in the context of detection and reconstruction of intercellular glial calcium waves. We extend the framework by a different decomposition algorithm and iterative reconstruction of the detected objects. Comparison with several popular state-of-the-art image denoising methods shows that performance of the multiscale vision model is similar in the denoising, but provides a better segmenation of the image into meaningful objects, whereas other methods need to be combined with dedicated thresholding and segmentation utilities.
CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Alexey R. Brazhe, Claus Mathiesen, Barbara Lind, Andrey Rubin, and Martin Lauritzen "Multiscale vision model for event detection and reconstruction in two-photon imaging data," Neurophotonics 1(1), 011012 (27 August 2014). https://doi.org/10.1117/1.NPh.1.1.011012
Published: 27 August 2014
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
KEYWORDS
Calcium

Data modeling

Wavelets

Denoising

Visual process modeling

Reconstruction algorithms

Two photon imaging

Back to Top