Deposition methods have been used extensively to achieve high-quality, semi-transparent solar cells. Here, we have studied semi-transparent electrodes based on WO3 and Ag, to boost the PCE in semi-transparent formamidinium lead bromide (FAPbBr3) solar cells. A screening upon the mixed halide perovskite, from pure bromide to pure iodide has been made, demonstrating that the PCE increase with the semi-transparent electrode compare to the conventional semi-transparent Au. This work demonstrates the potential use of semi-transparent electrode to improve the light harvesting of the perovskite layer, by using optical methods to compensate chemical limitation, paving the way for application in building integration.
KEYWORDS: Perovskite, Nanocrystals, Excitons, Optical properties, Nanophotonics, Polymethylmethacrylate, Metals, Bromine, Temperature metrology, Near field optics
Metal halide perovskites in the form of nanocrystals are highly efficient light emitters at visible-NIR wavelengths. In this work, the optical properties of single nanocrystals and ensembles will be discussed, as also several applications in nanophotonics. At low temperatures, single nanocrystals can be also single photon emitters if blinking and spectral diffusion is conveniently reduced. In the case of nanocrystal assemblies, stimulated emission can be observed with thresholds lower than 10 μJ/cm2 under nanosecond laser excitation at low temperatures, whose physical origin is attributed to single exciton recombination. Finally, the coupling of perovskite nanocrystals to the optical modes of hyperbolic metaldielectric metamaterials has been studied and demonstrated an important Purcell enhancement of the exciton radiative emission by more than a factor three for CsPbI3 and around factor two for FAPbI3 when the distance between the emitters and HMM is 10 nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.