The ultraviolet (UV) index is an international standard measure of the strength of solar ultraviolet radiation on the earth's surface at a specific place and time. Solar radiation with a high UV index can produce damage to the skin and eye (photoaging and photokeratitis). The levels of UV radiation are commonly detected using silicon-based optoelectronic sensors, which can be expensive. Here we propose a way to measure the UV index using natural organic pigments which fluoresce when exposed to UV radiation. In combination with an optical fiber, we have built a prototype sensor based on the pigment of turmeric or "Curcuma Longa". Curcuma longa fluoresces in the range of 500 to 680 nm when exposed to UV radiation. The system uses a filter to isolate the sunlight UV component. The sensor measures the variation in fluorescence intensity using a light dependent resistor to determine radiation levels and correlate it with the UV index. The sensor has been tested in Loja, Ecuador which is located at the equator (UV levels can reach up to 20.0 at the equator). When compared to a standard commercially available sensor (ML8511/LAPIS Semiconductor) this prototype has an error of ± 2.8%. We will describe the optical design and present measurements made with this novel inexpensive sensor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.