In this work, we utilize time-resolved fluorescence spectroscopy to investigate the exciton diffusion properties of polymeric, organic nanoparticles loaded with fluorescent dyes, which mimic the role of natural light-harvesting complexes found in photosynthetic organisms. We employ polarization-resolved fluorescence up-conversion spectroscopy to track the kinetics of fluorescence anisotropy decay, unravelling the timescales of homo- Exciton Energy Transfer (EET). Additionally, we employ photoluminescence spectroscopy to study the fluence-dependent population decay kinetics, uncovering the Singlet-Singlet exciton Annihilation (SSA) mechanism. Moreover, we explore the population kinetics of donor dyes when co-encapsulated with a fluorescent acceptor at low concentrations within the ONPs. From the measured parameters, we deduce a diffusion constant of ~0.5 nm^2/ps, resulting in a diffusion length as large as 70 nm, i.e. twice as large as the ONP diameter.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.