Proceedings Article | 5 October 2015
KEYWORDS: Nanoparticles, Stochastic processes, Systems modeling, Optical tweezers, Bistability, Chemical reactions, Data processing, Oscillators, Switching, Chemistry
Bistable systems are ubiquitous in nature. Classical examples in chemistry and biology include relaxation kinetics in chemical reactions [1] and stochastic resonance processes such as neuron firing [2,3]. Likewise, bistable systems play a key role in signal processing and information handling at the nanoscale, giving rise to intriguing applications such as optical switches [4], coherent signal amplification [5,6] and weak forces detection [5].
The interest and applicability of bistable systems are intimately connected with the complexity of their dynamics, typically due to the presence of a large number of parameters and nonlinearities. Appropriate modeling is therefore challenging. Alternatively, the possibility to experimentally recreate bistable systems in a clean and controlled way has recently become very appealing, but elusive and complicated. With this aim, we combined optical tweezers with a novel active feedback-cooling scheme to develop a well-defined opto-mechanical platform reaching unprecedented performances in terms of Q-factor, frequency stability and force sensitivity [7,8]. Our experimental system consists of a single nanoparticle levitated in high vacuum with optical tweezers, which behaves as a non-linear (Duffing) oscillator under appropriate conditions. Here, we prove it to be an ideal tool for a deep study of bistability.
We demonstrate bistability of the nanoparticle by noise activated switching between two oscillation states, discussing our results in terms of a double-well potential model. We also show the flexibility of our system in shaping the potential at will, in order to meet the conditions prescribed by any bistable system that could therefore then be simulated with our setup.
References
[1] T. Amemiya, T. Ohmori, M. Nakaiwa, T. Yamamoto, and T. Yamaguchi, “Modeling of Nonlinear Chemical Reaction Systems and Two-Parameter Stochastic Resonance,” J. Biol. Phys. 25 (1999) 73
[2] F. Moss, L. M. Ward, and W. G. Sannita, “Stochastic resonance and sensory information processing: a tutorial and review of application” Clinical neurophysiology 115 (2004) 267
[3] M. Platkov, and M. Gruebele, “Periodic and stochastic thermal modulation of protein folding kinetics” J. Chem. Phys. 141 (2014) 035103
[4] T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi. “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip”. Opt. Lett., 30 (2005) 2575
[5] R. L. Badzey and P. Mohanty. “Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance” Nature, 437 (2005) 995
[6] W. J. Venstra, H. J. R. Westra, and H. S. J. van der Zant. “Stochastic switching of cantilever motion,” Nature Communications, 4 (2013) 3624
[7] J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny “Subkelvin parametric feedback cooling of a Laser-Trapped nanoparticle” Phys. Rev. Lett. 109 (2012) 103603
[8] J. Gieseler, M. Spasenović, L. Novotny, and R. Quidant, “Nonlinear Mode Coupling and Synchronization of a Vacuum-Trapped Nanoparticle,” Phys. Rev. Lett. 112 (2014) 103603