Presentation + Paper
16 March 2020 Melanoma detection with electrical impedance spectroscopy and dermoscopy using joint deep learning models
Nils Gessert, Marcel Bengs, Alexander Schlaefer
Author Affiliations +
Abstract
The initial assessment of skin lesions is typically based on dermoscopic images. As this is a difficult and time-consuming task, machine learning methods using dermoscopic images have been proposed to assist human experts. Other approaches have studied electrical impedance spectroscopy (EIS) as a basis for clinical decision support systems. Both methods represent different ways of measuring skin lesion properties as dermoscopy relies on visible light and EIS uses electric currents. Thus, the two methods might carry complementary features for lesion classification. Therefore, we propose joint deep learning models considering both EIS and dermoscopy for melanoma detection. For this purpose, we first study machine learning methods for EIS that incorporate domain knowledge and previously used heuristics into the design process. As a result, we propose a recurrent model with state-max-pooling which automatically learns the relevance of different EIS measurements. Second, we combine this new model with different convolutional neural networks that process dermoscopic images. We study ensembling approaches and also propose a cross-attention module guiding information exchange between the EIS and dermoscopy model. In general, combinations of EIS and dermoscopy clearly outperform models that only use either EIS or dermoscopy. We show that our attention-based, combined model outperforms other models with specificities of 34:4% (CI 31:3-38:4), 34:7% (CI 31:0-38:8) and 53:7% (CI 50:1-57:6) for dermoscopy, EIS and the combined model, respectively, at a clinically relevant sensitivity of 98 %.
Conference Presentation
© (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Nils Gessert, Marcel Bengs, and Alexander Schlaefer "Melanoma detection with electrical impedance spectroscopy and dermoscopy using joint deep learning models", Proc. SPIE 11314, Medical Imaging 2020: Computer-Aided Diagnosis, 1131414 (16 March 2020); https://doi.org/10.1117/12.2548974
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Melanoma

Skin

Dielectric spectroscopy

Machine learning

Performance modeling

Tumor growth modeling

Nickel

Back to Top