Presentation + Paper
5 March 2021 Intensity noise and modulation dynamic of epitaxial quantum dot semiconductor lasers on silicon
Author Affiliations +
Abstract
Quantum dot lasers directly grown on silicon are excellent candidates to achieve energy and cost-efficient optical transceivers thanks to their outstanding properties such as high temperature stability, low threshold lasing operation, and high feedback tolerance. In order to reach even better performance, p-type doping is used to eliminate gain saturation, gain broadening due to hole thermalization and to further reduce the linewidth enhancement factor. Optical transceivers with low relative intensity noise are also highly desired to carry broadband data with low bit-error rate. Indeed, the intensity noise stemming from intrinsic optical phase and frequency fluctuations caused by spontaneous emission and carrier noise degrades the signal-to-noise ratio and the bit-error rate hence setting a limit of a highspeed communication system. This paper constitutes a comprehensive study of the intensity noise properties of epitaxial quantum dot lasers on silicon. Results show minimal values between - 140 dB/Hz and - 150 dB/Hz for doping level between 0 and 20 holes/dot in the active region. In particular, the intensity noise is insensitive to temperature for p-doped QD laser. Modulation properties such as damping, carrier lifetime, and K-factor are also extracted from the noise characteristics and analyzed with respect to the doping level. We also provide numerical insights based on an excitonic model illustrating the effects of the Shockley-Read-Hall recombination on the intensity noise features. These new findings are meaningful for designing high speed and low noise quantum dot devices to be integrated in future photonic integrated circuits.
Conference Presentation
© (2021) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
F. Grillot, J. Duan, S. Zhao, B. Dong, H. Huang, J. C. Norman, and J. E. Bowers "Intensity noise and modulation dynamic of epitaxial quantum dot semiconductor lasers on silicon", Proc. SPIE 11691, Silicon Photonics XVI, 116910Q (5 March 2021); https://doi.org/10.1117/12.2578760
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Semiconductor lasers

Silicon

Quantum dot lasers

Modulation

Quantum dots

Signal to noise ratio

Doping

Back to Top