Presentation + Paper
29 August 2022 HARMONI at ELT: a Zernike wavefront sensor for the high-contrast module: testbed results with realistic observation conditions
Adrien Hours, Alexis Carlotti, David Mouillet, Alain Delboulbé, Sylvain Guieu, Laurent Jocou, Thibaut Moulin, Fabrice Pancher, Patrick Rabou, Elodie Choquet, Kjetil Dohlen, Jean François Sauvage, Mamadou N'Diaye
Author Affiliations +
Abstract

ELT-HARMONI is the first light visible and near-IR integral field spectrograph (IFS) for the ELT. It covers a large spectral range from 450nm to 2450nm with resolving powers from 3500 to 18000 and spatial sampling from 60mas to 4mas. It can operate in two Adaptive Optics modes - SCAO (including a High Contrast capability) and LTAO - or with NOAO. The project is preparing for Final Design Reviews.

The High Contrast Module (HCM) will allow HARMONI to perform direct imaging and spectral analysis of exoplanets up to 106 times fainter than their host star. Quasi-static aberrations are a limiting factor and must be calibrated as close as possible to the focal plane masks to reach the specified contrast. A Zernike sensor for Extremely Low-level Differential Aberrations (ZELDA) will be used in real-time and closed-loop operation at 0.1Hz frequency for this purpose. Unlike a Shack-Hartmann, the ZELDA wavefront sensor is sensitive to Island and low-wind effects. The ZELDA sensor has already been tested on VLT-SPHERE1 and will be used in other instruments. Our objective is to adapt this sensor to the specific case of HARMONI.

A ZELDA prototype is being both simulated and experimentally tested at IPAG. Its nanometric precision has first been checked in 2020 in the case of slowly evolving, small wavefront errors, and without dispersion nor turbulence residuals. On this experimental basis, we address the performance of the sensor under realistic operational conditions including residuals, mis-centring, dispersion, sensitivity, etc. Atmospheric refraction residuals were introduced by the use of a prism, and turbulence was introduced by a spatial light modulator which is also used to minimise wavefront residuals in a closed loop in the observing conditions expected with HARMONI.
Conference Presentation
© (2022) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Adrien Hours, Alexis Carlotti, David Mouillet, Alain Delboulbé, Sylvain Guieu, Laurent Jocou, Thibaut Moulin, Fabrice Pancher, Patrick Rabou, Elodie Choquet, Kjetil Dohlen, Jean François Sauvage, and Mamadou N'Diaye "HARMONI at ELT: a Zernike wavefront sensor for the high-contrast module: testbed results with realistic observation conditions", Proc. SPIE 12185, Adaptive Optics Systems VIII, 121852E (29 August 2022); https://doi.org/10.1117/12.2627291
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Adaptive optics

Wavefront sensors

Spatial light modulators

Wavefronts

Calibration

Refraction

Back to Top