Paper
2 May 2012 Thin film surface processing by ultrashort laser pulses (USLP)
D. Scorticati, J. Z. P. Skolski, G. R. B. E. Römer, A. J. Huis in 't Veld, M. Workum, M. Theelen, M. Zeman
Author Affiliations +
Abstract
In this work, we studied the feasibility of surface texturing of thin molybdenum layers on a borosilicate glass substrate with Ultra-Short Laser Pulses (USLP). Large areas of regular diffraction gratings were produced consisting of Laserinduced periodic surface structures (LIPSS). A short pulsed laser source (230 fs-10 ps) was applied using a focused Gaussian beam profile (15-30 μm). Laser parameters such as fluence, overlap (OL) and Overscans (OS), repetition frequency (100-200 kHz), wavelength (1030 nm, 515 nm and 343 nm) and polarization were varied to study the effect on periodicity, height and especially regularity of LIPSS obtained in layers of different thicknesses (150-400 nm). The aim was to produce these structures without cracking the metal layer and with as little ablation as possible. It was found that USLP are suitable to reach high power densities at the surface of the thin layers, avoiding mechanical stresses, cracking and delamination. A possible photovoltaic (PV) application could be found in texturing of thin film cells to enhance light trapping mechanisms.
© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
D. Scorticati, J. Z. P. Skolski, G. R. B. E. Römer, A. J. Huis in 't Veld, M. Workum, M. Theelen, and M. Zeman "Thin film surface processing by ultrashort laser pulses (USLP)", Proc. SPIE 8438, Photonics for Solar Energy Systems IV, 84380T (2 May 2012); https://doi.org/10.1117/12.922270
Lens.org Logo
CITATIONS
Cited by 4 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Molybdenum

Picosecond phenomena

Thin films

Glasses

Scanning electron microscopy

Laser sources

Pulsed laser operation

Back to Top