Paper
18 February 2013 Update of Laser Mégajoule large optics wavefront performance requirements
Stéphane Mainguy, Jean-Philippe Airiau, Thierry Bart, Vincent Beau, Edouard Bordenave, Stéphane Bouillet, Christian Chappuis, Sandrine Chico, Philippe Cormont, Nathalie Darbois, Jérome Daurios, Vincent Denis, Laure Eupherte, Nathalie Ferriou-Darbois, Servane Fontaine, Gaël Gaborit, Claire Grosset-Grange, Eric Journot, Laurent Lamaignère, Thomas Lanternier, Eric Lavastre, Christophe Leymarié, Louis-André Lompré, Mélanie Mangeant, Cédric Maunier, Jérome Néauport, Etienne Perrot-Minnot, Gérard Razé, Stéphane Reyné, Claude Rouyer, Jean-Michel Sajer, Stéphane Seznec, Daniel Taroux, Sébastien Vermersch, Laurent Le Déroff
Author Affiliations +
Abstract
The Laser Mégajoule (LMJ) facility has about 40 large optics per beam. For 22 bundles with 8 beams per bundle, it will contain about 7.000 optical components. First experiments are scheduled at the end of 2014. LMJ components are now being delivered. Therefore, a set of acceptance criteria is needed when the optical components are exceeding the specifications. This set of rules is critical even for a small non-conformance ratio. This paper emphasizes the methodology applied to check or re-evaluate the wavefront requirements of LMJ large optics. First we remind how LMJ large component optical specifications are expressed and we describe their corresponding impacts on the laser chain. Depending on the location of the component in the laser chain, we explain the criteria on the laser performance considered in our impact analyses. Then, we give a review of the studied propagation issues. The performance analyses are mainly based on numerical simulations with Miró propagation simulation software. Analytical representations for the wavefront allow to study the propagation downstream local surface or bulk defects and also the propagation of a residual periodic aberration along the laser chain. Generation of random phase maps is also used a lot to study the propagation of component wavefront/surface errors, either with uniform distribution and controlled rms value on specific spatial bands, or following a specific wavefront/surface Power Spectral Distribution (PSD).
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Stéphane Mainguy, Jean-Philippe Airiau, Thierry Bart, Vincent Beau, Edouard Bordenave, Stéphane Bouillet, Christian Chappuis, Sandrine Chico, Philippe Cormont, Nathalie Darbois, Jérome Daurios, Vincent Denis, Laure Eupherte, Nathalie Ferriou-Darbois, Servane Fontaine, Gaël Gaborit, Claire Grosset-Grange, Eric Journot, Laurent Lamaignère, Thomas Lanternier, Eric Lavastre, Christophe Leymarié, Louis-André Lompré, Mélanie Mangeant, Cédric Maunier, Jérome Néauport, Etienne Perrot-Minnot, Gérard Razé, Stéphane Reyné, Claude Rouyer, Jean-Michel Sajer, Stéphane Seznec, Daniel Taroux, Sébastien Vermersch, and Laurent Le Déroff "Update of Laser Mégajoule large optics wavefront performance requirements", Proc. SPIE 8602, High Power Lasers for Fusion Research II, 86020G (18 February 2013); https://doi.org/10.1117/12.2004148
Lens.org Logo
CITATIONS
Cited by 4 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Wavefronts

Wave propagation

Optical components

Optical amplifiers

Laser optics

Mirrors

Numerical simulations

RELATED CONTENT


Back to Top