The ability to detect motion and to track a moving object that is hidden around a corner or behind a wall
provides a crucial advantage when physically going around the obstacle is impossible or dangerous. One recently
demonstrated approach to achieving this goal makes use of non-line-of-sight picosecond pulse laser ranging.
This approach has recently become interesting due to the availability of single-photon avalanche diode (SPAD)
receivers with picosecond time resolution. We present a time-resolved non-sequential ray-tracing model and its
application to indirect line-of-sight detection of moving targets. The model makes use of the Zemax optical
design programme's capabilities in stray light analysis where it traces large numbers of rays through multiple
random scattering events in a 3D non-sequential environment. Our model then reconstructs the generated
multi-segment ray paths and adds temporal analysis. Validation of this model against experimental results is
shown. We then exercise the model to explore the limits placed on system design by available laser sources and
detectors. In particular we detail the requirements on the laser's pulse energy, duration and repetition rate, and
on the receiver's temporal response and sensitivity. These are discussed in terms of the resulting implications
for achievable range, resolution and measurement time while retaining eye-safety with this technique. Finally,
the model is used to examine potential extensions to the experimental system that may allow for increased
localisation of the position of the detected moving object, such as the inclusion of multiple detectors and/or
multiple emitters.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.