Cementum deposits on mammalian teeth contain layered microstructures associated with the chronological age of an animal and other details of their life history. Hard X-ray tomography data captured this record contained within the cementum deposits from whole teeth without sectioning. We investigated three teeth of African bovids, namely gemsbok (Oryx gazella), eland (Taurotragus oryx), and African or Cape buffalo (Syncerus caffer) using the laboratorybased system nanotom m for measuring each complete tooth to identify relevant regions, which were scanned at the ANATOMIX beamline of Synchrotron SOLEIL, France. Using microtomography in archaeological materials such as teeth, eliminates the need for tooth sectioning, making it a desirable alternative for archaeologists and museum curators. Synchrotron measurements enabled the application of pixel sizes as low as 0.65µm, which generated around 40 TB of data. The three adult bovids investigated here, have a known day of death and season of death, and come from regions with distinct seasonal patterns in temperature and/or rainfall. They also have an estimated age at death based on occlusal wear. The known information serves as a control to determine the applicability of microtomography on whole teeth of large bovids. Preliminary results show that microtomography can successfully replace the need of sectioning in cementum dental analysis. Our future goal is to develop a protocol to standardize procedures of tooth cementum analysis in bovids using microtomography.
Comparable to annual rings present in a tree trunk, human tooth cementum contains yearly deposited incremental layers often termed incremental lines, which are generally visualized from tooth slides with optical microscopy in two dimensions. These micrometer-thin incremental lines are used to decode age-at-death and stress periods over the lifetime of an individuum. One can also visualize these layers without physical slicing by means of hard X rays because of density modulations. Within this project, two optically almost transparent tooth slides were used to record optical data in two dimensions with submicron pixel sizes. These data were registered with projections of available synchrotron radiation-based tomography data of the slides. Such data were also acquired for an entire tooth to determine thickness variations in each layer, the intra-layer thickness, and variations between the layers, the inter-layer thickness, automatically.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.