Nonlinear metasurfaces based on coupling of intersubband transitions in n-doped semiconductor heterostructures with optical modes in nanoresonators provide the largest known second-order nonlinear response in condensed matter systems in the mid-infrared spectral range. However, these giant nonlinearities are only present at relatively low pumping intensities which limits the maximum achievable frequency conversion efficiency. We experimentally investigate a new nonlinear intersubband metasurface design for second harmonic generation based on two-level nonlinear intersubband system that provides high nonlinearity combined with significantly reduced intensity saturation compared to the intersubband metasurfaces based on three-level intersubband systems demonstrated so far.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.