The development of spaceborne coronagraphic technology is of paramount importance to the detection of habitable exoplanets in visible light. In space, coronagraphs are able to bypass the limitations imposed by the atmosphere to reach deeper contrasts and detect faint companions close to their host star. To effectively test this technology in a flight-like environment, a high-contrast imaging testbed must be designed for operation in a thermal vacuum (TVAC) chamber. A TVAC-compatible high-contrast imaging testbed is undergoing development at the University of Arizona inspired by a previous mission concept: The Coronagraphic Debris and Exoplanet Exploring Payload (CDEEP). The testbed currently operates at visible wavelengths and features a Boston Micromachines Kilo-C DM for wavefront control. Both a vector vortex coronagraph and a knife-edge Lyot coronagraph operating mode are under test. The optics will be mounted to a 1 × 2 meter pneumatically isolated optical bench designed to operate at 10−8 torr and achieve raw contrasts of 10−8 or better. The validation of our optical surface quality, alignment procedure, and first light results are presented. We also report on the status of the testbed’s integration in the vaccum chamber.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.