In many signal recovery applications, measurement data is comprised of multiple signals observed concurrently. For instance, in multiplexed imaging, several scene subimages are sensed simultaneously using a single detector. This technique allows for a wider field-of-view without requiring a larger focal plane array. However, the resulting measurement is a superposition of multiple images that must be separated into distinct components. In this paper, we explore deep neural network architectures for this image disambiguation process. In particular, we investigate how existing training data can be leveraged and improve performance. We demonstrate the effectiveness of our proposed methods on numerical experiments using the MNIST dataset.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.