From its foundation Inplane Photonics focused on developing integrated solutions based on Planar Lightwave Circuit(PLC) technology. It is universally agreed that the path to lower cost-per-function in Photonics, as in Electronics, leads to integration. The timing of introduction of a new technological solution and the rate at which it will penetrate the market very much depends on the interplay between the size of the market, advantages the new technology offers, and the investment needed to achieve the level of performance that is envisioned. In telecom applications, where the main drivers for technology selection are cost and performance, such large-scale investment did not materialized yet for the PLC technology mostly due to a limited market size.
Planar waveguide technology has long been touted as the major platform for optical integration, which could dramatically lower component/module size and cost in optical networks. This technology has finally come to maturity with such waveguide-based optical products as wavelength multiplexers, switches, splitters and couplers, which are common nowadays. However, its potential as a complete solution for integration of a subsystem on a chip has so far been limited by the lack of integrated active elements providing gain to deteriorating optical signals. As the signal propagates through the fiber-optic network, it dissipates its energy and requires amplification in the network subsystems to maintain a required signal to noise ratio. Discrete fiber amplifiers are designed into systems and maintain required signal levels. However, if new components are introduced or the current ones are changed, current amplifiers have a limited ability to compensate for changes. Inplane's solution to the signal degradation problem is an optical amplifier that can be integrated onto the same planar waveguide platform as the other passive elements of the subsystem. Subsystems on such a platform will be able to automatically and internally adjust signal optical power, and enable simple interfacing between optical modules, module replacement and upgrades in the network. Inplane Photonics has developed Er-doped waveguide amplifier (EDWA) technology, which is fully compatible with the glass-on-silicon waveguide platform. In this paper we will present recent EDWA performance that approaches that of a fiber amplifier. Furthermore, we will demonstrate several examples of practical integration between passive and active building blocks on a single optical chip.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.