Recaldent is a product of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). The remineralizing potential of CPP-ACP per se, or when combined with 0.22% Fl gel on artificially demineralized enamel using laser florescence, is investigated. Mesial surfaces of 15 sound human molars are tested using a He-Cd laser beam at 441.5 nm with 18-mW power as an excitation source on a suitable setup based on a Spex 750-M monochromator provided with a photomultiplier tube (PMT) for detection of collected autofluorescence from sound enamel. Mesial surfaces are subjected to demineralization for ten days. The spectra from demineralized enamel are measured. Teeth are divided into three groups according to the remineralizing regimen: group 1 Recaldent per se, group 2 Recaldent combined with fluoride gel and ACP, and group 3 artificial saliva as a positive control. After following these protocols for three weeks, the spectra from the remineralized enamel are measured. The spectra of enamel autofluorescence are recorded and normalized to peak intensity at about 540 nm to compare spectra from sound, demineralized, and remineralized enamel surfaces. A slight red shift occurred in spectra from demineralized enamel, while a blue shift may occur in remineralized enamel. Group 2 shows the highest remineralizing potential. Combining fluoride and ACP with CPP-ACP can give a synergistic effect on enamel remineralization.
Background and objective: Minimal intervention dentistry (MID) calls for early detection and remineralization of initial demineralization. Laser fluorescence is efficient in detecting changes in mineral tooth content. Recaldent is a product of casein phosphopeptide-amorphous calcium phosphate (CPP- ACP) which delivers calcium and phosphate ions to enamel. A new product which also contains fluoride is launched in United States. The remineralizing potential of CPP- ACP per se, or when combined with 0.22% Fl supplied in an oral care gel on artificially demineralised enamel using laser fluorescence was investigated.
Methods: Fifteen sound human molars were selected. Mesial surfaces were tested using He-Cd laser beam at 441.5nm with 18mW power as excitation source on a suitable set-up based on Spex 750 M monochromator provided with PMT for detection of collected auto-fluorescence from sound enamel. Mesial surfaces were subjected to demineralization for ten days. The spectra from demineralized enamel were measured. Teeth were then divided according to the remineralizing regimen into three groups: group I recaldent per se, group II recaldent combined with fluoride gel and group III artificial saliva as a positive control. After following these protocols for three weeks, the spectra from remineralized enamel from the three groups were measured. The spectra of enamel auto-fluorescence were recorded and normalized to peak intensity at about 540 nm to compare between spectra from sound, demineralized and remineralized enamel surfaces.
Results: A slight red shift was noticed in spectra from demineralized enamel, while a blue shift may occur in remineralized enamel. Group II showed the highest remineralizing potential.
Conclusions: Combining fluoride with CPP-ACP had a synergistic effect on enamel remineralization. In addition, laser auto-fluorescence is an accurate technique for assessment of changes in tooth enamel minerals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.