Ultrafast demagnetization after femtosecond laser excitation of thin ferromagnetic films has been shown to occur due to a combination of spin-flip scattering in the film and spin transport to a conducting substrate or adjacent layer. Here we demonstrate that the inherent depth sensitivity of the transversal magneto-optical Kerr effect can be employed to derive conclusions on a transient spatial profile in the magnetization in the direction normal to the sample surface. This magnetization profile is qualitatively different for demagnetization caused by spin flips and spin transport. With the help of simulations based on simple phenomenological models we show that spin transport to the substrate in Co/Cu(001) films dominates the demagnetization before the thermalization of the electronic system, i.e. at times < 100 fs, while after approximately 200 fs mainly spin-flip scattering determines the magnetization profile, in agreement with our earlier findings employing the longitudinal magneto-optical Kerr effect.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.