This paper presents the use of TiO2 as a strip loaded waveguide on thin-film lithium niobate (TFLN). The waveguides were fabricated by using an RF reactive sputtering deposition followed by a dielectric lift-off process. An additional layer of SiO2 was deposited as a cladding layer using a plasma-enhanced chemical vapor deposition (PECVD). To characterize this process, atomic-force-microscopy (AFM) and an ellipsometer were used. Lastly, a propagation loss of 1.26dB/cm at 1550nm was experimentally measured by Optical Backscatter reflectometry (OBR) and are presented in this paper.
This paper presents an overview and application of thin-film-lithium-niobate (TFLN) modulators that have low drive voltages, i.e., Vπ. Such modulators are critical components for realizing high-speed operation in a modern telecommunication networks, wireless communications, and RF-Photonic applications. Recent developments in crystalion- slice TFLN have enabled a new class of electro-optic modulators that have a tighter mode confinement, compact footprint, ultra-high bandwidth, and low modulating voltages. However, lithium-niobate suffers from difficult microstructuring in comparison to silicon-based materials, since it can have an etch resistance greater than many metal-based hard masks. To overcome this challenge, a hybrid material system combining the electro-optic properties of TFLN with the ultra-low propagation loss of silicon nitride has been developed. In this work, we demonstrate an integrated hybrid phase modulator, based on a silicon-nitride strip loaded waveguide on a TFLN material platform, which provides tight optical mode confinement, without the need to etch lithium-niobate. As a result, the drive electrodes can be placed closer to the optical waveguide thereby resulting in a strong RF and optical mode overlap. A 2.4 cm long phase modulator and Mach-Zehnder modulator with a demonstrated Vπ of 1.5 V and 0.875 V, respectively in DC are presented along with other candidate and demonstrated devices, such as multimode interference coupler, micro-ring, and racetrack resonator.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.