PurposeDiffusion tensor imaging (DTI) is a magnetic resonance imaging technique that provides unique information about white matter microstructure in the brain but is susceptible to confounding effects introduced by scanner or acquisition differences. ComBat is a leading approach for addressing these site biases. However, despite its frequent use for harmonization, ComBat’s robustness toward site dissimilarities and overall cohort size have not yet been evaluated in terms of DTI.ApproachAs a baseline, we match N=358 participants from two sites to create a “silver standard” that simulates a cohort for multi-site harmonization. Across sites, we harmonize mean fractional anisotropy and mean diffusivity, calculated using participant DTI data, for the regions of interest defined by the JHU EVE-Type III atlas. We bootstrap 10 iterations at 19 levels of total sample size, 10 levels of sample size imbalance between sites, and 6 levels of mean age difference between sites to quantify (i) βAGE, the linear regression coefficient of the relationship between FA and age; (ii) γ^sf*, the ComBat-estimated site-shift; and (iii) δ^sf*, the ComBat-estimated site-scaling. We characterize the reliability of ComBat by evaluating the root mean squared error in these three metrics and examine if there is a correlation between the reliability of ComBat and a violation of assumptions.ResultsComBat remains well behaved for βAGE when N>162 and when the mean age difference is less than 4 years. The assumptions of the ComBat model regarding the normality of residual distributions are not violated as the model becomes unstable.ConclusionPrior to harmonization of DTI data with ComBat, the input cohort should be examined for size and covariate distributions of each site. Direct assessment of residual distributions is less informative on stability than bootstrap analysis. We caution use ComBat of in situations that do not conform to the above thresholds.
Imaging findings inconsistent with those expected at specific chronological age ranges may serve as early indicators of neurological disorders and increased mortality risk. Estimation of chronological age, and deviations from expected results, from structural magnetic resonance imaging (MRI) data has become an important proxy task for developing biomarkers that are sensitive to such deviations. Complementary to structural analysis, diffusion tensor imaging (DTI) has proven effective in identifying age-related microstructural changes within the brain white matter, thereby presenting itself as a promising additional modality for brain age prediction. Although early studies have sought to harness DTI’s advantages for age estimation, there is no evidence that the success of this prediction is owed to the unique microstructural and diffusivity features that DTI provides, rather than the macrostructural features that are also available in DTI data. Therefore, we seek to develop white-matter-specific age estimation to capture deviations from normal white matter aging. Specifically, we deliberately disregard the macrostructural information when predicting age from DTI scalar images, using two distinct methods. The first method relies on extracting only microstructural features from regions of interest (ROIs). The second applies 3D residual neural networks (ResNets) to learn features directly from the images, which are nonlinearly registered and warped to a template to minimize macrostructural variations. When tested on unseen data, the first method yields mean absolute error (MAE) of 6.11 ± 0.19 years for cognitively normal participants and MAE of 6.62 ± 0.30 years for cognitively impaired participants, while the second method achieves MAE of 4.69 ± 0.23 years for cognitively normal participants and MAE of 4.96 ± 0.28 years for cognitively impaired participants. We find that the ResNet model captures subtler, non-macrostructural features for brain age prediction.
Connectivity matrices derived from diffusion MRI (dMRI) provide an interpretable and generalizable way of understanding the human brain connectome. However, dMRI suffers from inter-site and between-scanner variation, which impedes analysis across datasets to improve robustness and reproducibility of results. To evaluate different harmonization approaches on connectivity matrices, we compared graph measures derived from these matrices before and after applying three harmonization techniques: mean shift, ComBat, and CycleGAN. The sample comprises 168 agematched, sex-matched normal subjects from two studies: the Vanderbilt Memory and Aging Project (VMAP) and the Biomarkers of Cognitive Decline Among Normal Individuals (BIOCARD). First, we plotted the graph measures and used coefficient of variation (CoV) and the Mann-Whitney U test to evaluate different methods’ effectiveness in removing site effects on the matrices and the derived graph measures. ComBat effectively eliminated site effects for global efficiency and modularity and outperformed the other two methods. However, all methods exhibited poor performance when harmonizing average betweenness centrality. Second, we tested whether our harmonization methods preserved correlations between age and graph measures. All methods except for CycleGAN in one direction improved correlations between age and global efficiency and between age and modularity from insignificant to significant with p-values less than 0.05.
Multi-site diffusion MRI data is often acquired on different scanners and with distinct protocols. Differences in hardware and acquisition result in data that contains site dependent information, which confounds connectome analyses aiming to combine such multi-site data. We propose a data-driven solution that isolates site-invariant information whilst maintaining relevant features of the connectome. We construct a latent space that is uncorrelated with the imaging site and highly correlated with patient age and a connectome summary measure. Here, we focus on network modularity. The proposed model is a conditional, variational autoencoder with three additional prediction tasks: one for patient age, and two for modularity trained exclusively on data from each site. This model enables us to 1) isolate site-invariant biological features, 2) learn site context, and 3) re-inject site context and project biological features to desired site domains. We tested these hypotheses by projecting 77 connectomes from two studies and protocols (Vanderbilt Memory and Aging Project (VMAP) and Biomarkers of Cognitive Decline Among Normal Individuals (BIOCARD) to a common site. We find that the resulting dataset of modularity has statistically similar means (p-value ⪅0.05) across sites. In addition, we fit a linear model to the joint dataset and find that positive correlations between age and modularity were preserved.
Sleep disturbances are commonly reported among patients with Alzheimer’s Disease (AD). Further, the disruption of subcortical areas such as the Basal Forebrain (BF) and its constituent Nucleus Basalis of Meynert (NBM), which play an important role in maintaining wakefulness or alertness (also known as vigilance), occurs early in AD. In this study, we delineate vigilance-linked fMRI patterns in an aging population and determine how these patterns relate to subcortical integrity and cognition. We used fMRI data from the Vanderbilt Memory and Aging Project dataset, consisting of 49 MCI patients and 75 healthy controls. Since external measures of vigilance are not present during fMRI, we used a data-driven technique for extracting vigilance information directly from fMRI data. With this approach, we derived subject-specific spatial maps reflecting a whole-brain activity pattern that is correlated with vigilance. We first assessed the relationships between cognitive measures (subject memory composite and executive function scores) and structural measures (BF and NBM volumes obtained from subject-specific segmentation methods) using Pearson correlations. BF and NBM volumes were found to be significantly correlated with memory composite in MCI subjects and with executive function in HCs. We then performed a mediation analysis to evaluate how NBM volume may mediate fMRI-derived vigilance effects on memory composite scores in MCI subjects. fMRI vigilance activity and memory composite were significantly associated in the hippocampus, posterior cingulate cortex, and anterior cingulate cortex, regions involved in the default-mode and salience networks. These results suggest that cognitive decline in AD may be linked with both subcortical structural changes and vigilance-related fMRI signals, opening new directions for potential functional biomarkers in pathological aging populations.
Complex graph theory measures of brain structural connectomes derived from diffusion weighted images (DWI) provide insight into the network structure of the brain. Further, as the number of available DWI datasets grows, so does the ability to investigate associations in these measures with major biological factors, like age. However, one key hurdle that remains is the presence of scanner effects that can arise from different DWI datasets and confound multisite analyses. Two common approaches to correct these effects are voxel-wise and feature-wise harmonization. However, it is still unclear how to best leverage them for graph-theory analysis of an aging population. Thus, there is a need to better characterize the impact of each harmonization method and their ability to preserve age related features. We investigate this by characterizing four complex graph theory measures (modularity, characteristic path length, global efficiency, and betweenness centrality) in 48 participants aged 55 to 86 from Baltimore Longitudinal Study of Aging (BLSA) and Vanderbilt Memory and Aging Project (VMAP) before and after voxel- and feature-wise harmonization with the Null Space Deep Network (NSDN) and ComBat, respectively. First, we characterize across dataset coefficients of variation (CoV) and find the combination of NSDN, and ComBat causes the greatest reduction in CoV followed by ComBat alone then NSDN alone. Second, we reproduce published associations of modularity with age after correcting for other covariates with linear models. We find that harmonization with ComBat or ComBat and NSDN together improves the significance of existing age effects, reduces model residuals, and qualitatively reduces separation between datasets. These results reinforce the efficiency of statistical harmonization on the feature-level with ComBat and suggest that harmonization on the voxel-level is synergistic but may have reduced effect after running through the multiple layers of the connectomics pipeline. Thus, we conclude that feature-wise harmonization improves statistical results, but the addition of biologically informed voxel-based harmonization offers further improvement.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.