HYPSOS (HYPerspectral Stereo Observing System, patented) is a novel remote sensing instrument able to extract the spectral information from the two channels of a pushbroom stereo camera; thus it simultaneously provides 4D information, spatial and spectral, of the observed features. HYPSOS has been designed to be a compact instrument, compatible with small satellite applications, to be suitable both for planetary exploration as well for terrestrial environmental monitoring. An instrument with such global capabilities, both in terms of scientific return and needed resources, is optimal for fully characterizing the observed surface of investigation. HYPSOS optical design couples a pair of folding mirrors to a modified three mirror anastigmat telescope for collecting the light beams from the optical paths of the two stereo channels; then, on the telescope focal plane, there is the entrance slit of an imaging spectrograph, which selects and disperses the light from the two stereo channels on a bidimensional detector. With this optical design, the two stereo channels share the large majority of the optical elements: this allowed to realize a very compact instrument, which needs much less resources than an equivalent system composed by a stereo camera and a spectrometer. To check HYPSOS actual performance, we realized an instrument prototype to be operated in a laboratory environment. The laboratory setup is representative of a possible flight configuration: the light diffused by a surface target is collimated on the HYPSOS channel entrance apertures, and the target is moved with respect to the instrument to reproduce the in-flight pushbroom acquisition mode. Here we describe HYPSOS and the ground support equipment used to characterize the instrument, and show the preliminary results of the instrument alignment activities.
The HYPerspectral Stereo Observing System (HYPSOS) is a novel remote sensing pushbroom instrument able to give simultaneously both 3D spatial and spectral information of the observed features. HYPSOS is a very compact instrument, which makes it attractive for both possible planetary observation and for its use on a nanosat, e.g. for civilian applications. This instrument collects light from two different perspectives, as a classical pushbroom stereocamera, which allows to realize the tridimensional model of the observed surface, and then to extract the spectral information from each resolved element, thus obtaining a full 4-dimensional hypercube dataset. To demonstrate the actual performance of this novel type of instrument, we are presently realizing a HYPSOS prototype, that is an instrument breadboard to be tested in a laboratory environment. For checking its performance, we setup an optical facility representative of a possible flight configuration. In this paper we provide a description of HYPSOS concept, of its optomechanical design and of the ground support equipment used to characterize the instrument. An update on the present status of the experiment is finally given.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.