In this work, a novel method to obtain all-dielectric toroidal response metasurfaces in the W-band and THz range is demonstrated. Two designs are proposed, a symmetric and asymmetric disk metasurface. The first design is intended to corroborate the theoretical analysis, demonstrating the excitation of a strong toroidal mode resonance at 93.2 GHz. Then, the second design is used to demonstrate that symmetry-breaking variations in the disk dimensions, could lead to birefringent metasurfaces, affecting the polarization of the impinging light. Two structures are designed, a polarization beam splitter and a polarization converter. Such devices are difficult to obtain at the target frequency range with low absorption, so they could be of particular interest for the next generation of 5G communications and THz devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.