The appeal of portable electronic devices is growing gradually, which increases the demand for flexible and renewable energy storage devices. Hybrid materials can be used as renewable and flexible electrode material for this kind of devices. Organic–inorganic hybrid materials represent a creative substitute to design new materials and composites by accepting advantages of both materials. This paper reports the possibility of renewable cellulose and graphene composite as an electrode material for energy storage device such as supercapacitor. The morphology and structure of the nanocomposite are studied using scanning electron microscope and Energy-dispersive X-ray Spectroscopy. The performance of the composite as supercapacitor electrode material is evaluated by cyclic voltammograms and galvanostatic charge-discharge curves.
Cellulose nanofiber (CNF) has taken center stage as a future material with high specific strength, specific modulus and environmentally friendly behavior. However, natural CNFs are so randomly oriented that once CNFs are used in composites, their mechanical properties are not the same as expected from the CNFs. Thus, CNF alignment is important in fabricating composites and fibers. Interestingly, CNFs have negative diamagnetic anisotropy. In the presence of high magnetic field, the fiber axis of CNF can be aligned perpendicular to the applied field. This paper reports a preliminary study of CNF alignment by high dc magnetic field. The CNF emulsion is prepared by aqueous counter collision method and centrifugation. The CNF emulsion is placed in the high dc magnet and cured for a certain time. The alignment of CNF is investigated by scanning electron microscopy, mechanical tensile test.
Hybrid composites with organic and inorganic materials are drawing interest to researchers by adopting advantages of
organic materials and inorganic materials. Cellulose is biocompatible, cheap, environmentally friendly, renewable and
lightweight material. Nano crystalline form of cellulose (CNC) is a needle like rigid structure with a very high mechanical
strength. Graphene, crystalline forms of carbon, provides basic platform for many electronic and optoelectronic devices.
This paper introduces the fabrication process of cellulose nanocrystal/graphene oxide blended nanocomposite film.
Cellulose nanocrystal/graphene oxide nanocomposite films are prepared by mixing graphene oxide (GO) into cellulose
nanocrystal suspension using ultrasonic homogenizer. Scanning electron microscopy is used to study morphology. Optical
properties of the composite was characterized to evaluate the change in transparency after addition of GO in CNC.
Ultrasonic haptics actuator is a device that can create a haptic feedback to user’s hand. The modulation of ultrasonic frequency can give different textures to the users. In this study, a feasibility of the ultrasonic haptic actuator made on a flexible piezoelectric substrate is investigated. As the piezoelectric substrate helps to propagate flexural waves, a pair of interdigital transducer (IDT) with reflectors can produce standing waves, which can increase the vibrational displacement of the actuator. A pair of IDT pattern was fabricated on a piezoelectric polymer substrate. A finite element analysis is at first performed to design the actuator. A sinusoidal excitation voltage is applied on IDT electrodes at ultrasonic frequencies and the displacement waveforms are found. The displacement waveforms clearly represent how ultrasonic waves propagate through the piezoelectric substrate.
Miniaturization of optical systems has promoted a revolution in lens technology and this emerging field has much interest for medical practitioners as well as electronic engineers. Tunable liquid lens capable of adjusting its focal length have special curiosity in this regard where in micro-scale actuators are often integrated. Here we demonstrate a lens consisting of a transparent elastomer liquid composite containing organo modified cellulose nanocrystals. The actuator with the working voltage of only up to 0.8kV was capable to produce an area expansion and thereby altering the curvature of the lens (focal length) reversibly in 5 seconds. The effect of filler concentration on optical property and dielectric behavior of the composites were also analyzed.
This paper reports the experiment and finite element (FEM) simulation of an array type film haptic actuator. Haptic actuator was made of cellulose acetate films and adhesive tape separator between two films. For preparing 3×3 array haptic device, nine identical actuators were joined together. The purpose of an actuator is to create vibration feedback resulting from applied potential. Cellulose acetate based film actuator is suitable for transparent haptic devices because of its high dielectric constant, flexibility and transparency. The focus of this paper is to use a finite element model to simulate and analysis haptic actuator and verify that result with experiment. The reason of preferring ANSYS simulation is for the flexibility of modeling, time saving, post processing criteria and result accuracy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.