We report second harmonic generation (SHG) from thick hexagonal boron nitride (hBN) flakes with approximately 109 layers. Surprisingly, the resulting signal is stronger when compared to previously reported few-layer experiments that showed the SHG efficiency gradually decreasing with the increasing thickness. This confirms that thick hBN flakes can serve as a platform for nonlinear optics, which is useful because thick flakes are easy to exfoliate while retaining a large flake size. We also show spatial second harmonic maps revealing that SHG remains a useful tool for the characterization of the layer structure even in the case of a large number of layers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.