As in most applications of nanotechnology speed and precision are important requirements for getting good topographical
maps of material surfaces using Scanning Tunneling Microscopes (STM) and Atomic Force Microscopes
(AFM). Many STMs and AFMs use Piezoelectric tubes for scanning and positioning with nanometer resolution.
In this work a piezoelectric tube of the type typically used in STMs and AFMs is considered. Scanning using
this piezoelectric tube is hampered by the presence of a low- frequency resonance mode that is easily excited to
produce unwanted vibrations. The presence of this low-frequency resonance mode restricts the scanning speed of
the piezoelectric tube. Concept of a Positive Velocity and Position Feedback (PVPF) controller is introduced and
a controller is designed to dampen the effect of the undesired first resonance mode. To achieve good precision,
specific control signals are designed for the closed loop system to track a raster pattern. Experimental results
revel a significant damping of the resonance mode of interest, and consequently, a good tracking performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.