InAlGaN-based laser diodes (LDs) can be designed to emit across a wide range of wavelengths spanning UV to green. A common challenge across all wavelengths lies in the difficulty in producing low resistance p-type InAlGaN layers. For shorter wavelength devices, the requirement of high aluminium containing p-AlGaN leads to high device series resistance. For the longer wavelength devices approaching the green wavelengths, the thermal degradation of the indium-rich quantum wells during the growth of the p-GaN and p-AlGaN cladding layers reduces the device efficiency. In this paper we discuss how BluGlass’s remote plasma chemical vapour deposition (RPCVD) technology can address these challenges through improvements to intrinsic material properties as well as enabling novel design architectures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.