As the need for image resolution, transmission rate, and integration rises in space remote sensing applications, the charge accumulation-based TDI-CMOS sensor devices evolve fast. This study proposes a TDI-CMOS imaging system based on FPGA to answer the challenge of high-resolution, wide-format multispectral imaging. First, the device selection and stitching design ideas are clarified based on the index requirements of the imaging system; second, the design techniques of the TDI-CMOS imaging system are emphasized, and the implementation methods of critical technologies such as TDI-CMOS timing drive, register configuration, P-spectrum, and B-spectrum image data training, and high-speed data interface design of the imaging system are illustrated; third, the relevant experimental work is described. In conclusion, the experimental work is described, and the experimental findings are examined and interpreted. The experimental findings demonstrate that the imaging system has a signal-to-noise ratio of 45 dB for P-spectrum and 55 dB for B-spectrum and that the resolution of picture elements is 8288 columns for P-spectrum and 2072 columns for B-spectrum.
Space-based solar observation has severe requirements for resolution, dynamic range, and signal-to-noise ratio of the camera. In order to acquire high-quality solar image data, this paper proposes a high-resolution electronics system based on Gpixel GSENSE6060 image sensor for space-based solar observation. The system uses XILINX XQ5VFX130T as the timing control of the overall system, with DDR SDRAM to cache the image data, which can realize flexible working mode with the windowing mode of the sensor. Firstly, the principle of system parameter selection are given, and the work characteristics of GSENSE6060 are described, then the triggering and termination of event mode are realized by algorithm. The system has high flexibility and reliability, which is suitable for long-time Full-Disk observation and solar eruptions monitoring. During the flare eruption, a high frame rate acquisition with a resolution of 1024 × 1024 can be realized every 4s for the eruption region, which can be used to acquisition the maximum effective data. Experiments show that the system readout noise is better than 6 e-, in Rolling HDR mode can synthesize 16-bit, resolution of 4608 × 4608 and dynamic range larger than 90dB images, to meet the system design index.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.