This paper reviews the design, modeling, and testing of feedhorn arrays coupled to bolometric detector arrays being developed for the ESA Herschel Space Observatory's SPIRE instrument. SPIRE will incorporate five arrays of silicon nitride micromesh bolometers, in three broadband photometers and two Fourier-Transform spectrometers covering 200-700 μm, with a total of 326 feedhorn-coupled bolometers. The precision feedhorn arrays are formed by close-packing individually fabricated conical feedhorns, which terminate in waveguides and integrating cavities. The detector array is efficiently packaged by mounting it between a metallized silicon backshort array and the feedhorn array, which encloses the bolometers in precisely tuned integrating cavities. The absorption efficiency, bandwidth, and cross talk were first investigated with numerical simulations of the electromagnetic fields, and then measured for prototype arrays in a test facility. This discussion describes the design goals, simulations, fabrication, and measurements of optical efficiencies, spectral properties, beam shapes, and cross talk between bolometers.
We describe the design of Bolocam, a bolometric camera for millimeter-wave observations at the Caltech Submillimeter Observatory. Bolocam will have 144 diffraction-limited detectors operating at 300 mK, an 8 arcminute field of view, and a sky noise limited NEFD of approximately 35 mJy Hz-1/2 per pixel at (lambda) equals 1.4 mm. Observations will be possible at one of (lambda) equals 1.1., 1.4, or 2.1 mm per observing run. The detector array consists of sensitive NTD Ge thermistors bonded to silicon nitride micromesh absorbers patterned on a single wafer of silicon. This is a new technology in millimeter-wave detector array construction. To increase detector packing density, the feed horns will be spaced by 1.26 f(lambda) (at (lambda) equals 1.4 mm), rather than the conventional 2 f(lambda) . DC stable read out electronics will enable on-the-fly mapping and drift scanning. We will use Bolocam to map Galactic dust emission, to search for protogalaxies, and to observe the Sunyaev- Zel'dovich effect toward galaxy clusters.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.