While the human brain presents natural structural asymmetries between left and right hemispheres in MR images, most neurological diseases are associated with abnormal brain asymmetries. Due to the great variety of such anomalies, we present a framework to model normal structural brain asymmetry from control subjects only, independent of the neurological disease. The model dismisses data annotation by exploiting generative deep neural networks and one-class classifiers. We also propose a patch-based model to localize volumes of interest with reduced background sizes around selected brain structures and a one-class classifier based on an optimum-path forest. This model makes the framework independent of segmentation, which may fail, especially in abnormal images, or may not be available for a given structure. We validate the first method to the detection of abnormal hippocampal asymmetry using distinct groups of Epilepsy patients and testing controls. The results of validation using the original feature space and a two-dimensional space based on non-linear projection show the potential to extend the framework for abnormal asymmetry detection in other parts of the brain and develop intelligent and interactive virtual environments. For instance, the approach can be used for screening, inspection, and annotation of the detected anomaly type, allowing the development of CADx systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.