We extend upon the initial analysis on the Evolution of Operations for the Surveys Telescopes at Paranal Observatory (C. Romero et al 2016) and follow on an ongoing Science Operation project. The operational complexity of some of the new generation instruments and facilities, incorporated into Paranal observatory, such as the AOF (Adaptive Optics Facility) will supposed a big challenge for all areas involved, including the operational one. Paranal Science Operation realized that adaptation to the complexity of this new systems, while maintaining the operational mode in vigor and the available resources, were feasible by releasing man power on the Telescope and Instrument Operators group. On this regard, Surveys Telescopes; VISTA (Visible and Infrared Survey Telescope for astronomy) and VST (VLT Survey Telescope) were early identified as candidates to provide the more demanding systems with an additional support operator and since 2016, improvements on Surveys Telescopes (automatization, stabilities, operational panels and screens distribution at the console, among many others) has become a joint effort between MSE (Maintenance, Support and Engineering) and Science Operations, on this effort and as a way to cope with the limited resources, operators has took an important role on the analysis and development of this project. As well as on acquiring experience with the creation of new operational panels plus the maintenance of some operational scripts. Now the dry run for this new operational mode is set for January 2018 and a staff resource for future panels’ modifications is on the way.
The High Acuity Wide field K-band Imager (HAWK-I) instrument is a cryogenic wide field imager operating in the wavelength range 0.9 to 2.5 microns. It has been in operations since 2007 on the UT4 at the Very Large Telescope Observatory in seeing-limited mode. In 2017-2018, GRound Layer Adaptive optics Assisted by Lasers module (GRAAL) will be in operation and the system GRAAL+HAWK-I will be commissioned. It will allow: deeper exposures for nearly point-source objects, or shorter exposure times for reaching the same magnitude, and/or deeper detection limiting magnitude. With GRAAL, HAWK-I will operate more than 80% of the time with an equivalent K-band seeing of 0.55" (instead of 0.7" without GRAAL). GRAAL is already installed and the operations without adaptive optics were commissioned in 2015. We discuss here the latest updates on performance from HAWK-I without Adaptive Optics (AO) and the preparation for the commissioning of the system GRAAL+HAWK-I.
Since 2009, operations began at the Survey Telescopes at Paranal Observatory. The surveys aimed to observe using a large field of view targeting much fainter sources and covering wide areas of sky quickly. The first to enter operations was VISTA (Visible and Infrared Survey Telescope for Astronomy) and then the VST Telescope (VLT Survey Telescope). The survey telescopes introduced a change into the operational model of the time. The observations were wholly conducted by the telescope and instrument operator without the aid of a support astronomer. This prompted the gradual and steady improvement of tools for the operation of the observatory both generally and in particular for the Survey Telescopes. Examples of these enhancements include control systems for image quality, selection of OBs, logging of evening activities, among others. However, the new generation instruments at the Very Large Telescope (VLT) posed a new challenge to the observatory from a scientific and operational point of view. As these new systems were more demanding and complex, they would be more complicated to operate and require additional support. Hence, the focus of this study is to explore the possible development and optimization of the operations of the Survey telescopes, which would give greater operational flexibility in regards to the new generation instruments. Moreover, we aim to evaluate the feasibility of redistributing of telescope operators during periods of increased demand from other VLT systems.
We present the latest update of the European Southern Observatory's Very Large Telescope interferometer (VLTI). The operations of VLTI have greatly improved in the past years: reduction of the execution time; better offering of telescopes configurations; improvements on AMBER limiting magnitudes; study of polarization effects and control for single mode fibres; fringe tracking real time data, etc. We present some of these improvements and also quantify the operational improvements using a performance metric. We take the opportunity of the first decade of operations to reflect on the VLTI community which is analyzed quantitatively and qualitatively. Finally, we present briefly the preparatory work for the arrival of the second generation instruments GRAVITY and MATISSE.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.