In this paper, a widely tunable Cr:LiSAF laser with an external cavity was employed as the pump source. By using a triangular prism and double output couplers in the cavity, the line width can be narrowed and the pump center wavelength can be adjusted to the ideal value. The FWHM in spectrum of a pump laser can be narrowed to as small as 0.5 nm. The absorptivity of Ho:BYF at the center wavelength from 885 nm to 890 nm was measured, and the optimal pump center wavelength has been determined to 888.5 nm. Then the focal length of a focusing lens and the curvature radius of a laser output coupler have been optimized through a series of experiments. Finally, we have obtained the laser output at 3.9 μm with the optical-to-optical efficiency larger than 10% at the relatively low repetitive rate. The results might be helpful for the construction of a real laser system.
Laser processing is a technique based on the interaction between a laser and the substance for cutting, drilling, cleaning, welding, and other operations on metallic or non-metallic materials. It is widely used in some important fields of the national economy such as automobiles, microelectronics, electrical appliances, aviation, metallurgy, medical treatment, and machinery manufacturing. In the process of high-powered laser processing, a large amount of plasma will be generated and there will be the obvious inverse Bremsstrahlung absorption (IBA) near the plasma plume. The effect of laser processing will be significantly deteriorated due to the absorption of laser photons and changes in light intensity distribution. Besides, laser-induced plasma is produced during the interaction between a high-powered laser and materials. Also, it has the very important value in the research of analyzing the high-powered laser processing. To fully understand the laserinduced plasma, this paper uses the Hilbert procedure to numerically investigate the plasma generated in the laser processing. The method firstly acquires the images corresponding to the fringes of a Mach–Zehnder interferometer by using the detection after a probe laser beam passing through the plasma plume. Then, a series of operations such as the spectrum shift, unwrap, and Abel inverse transformation are performed after a fast Fourier transform (FFT). Finally, the density distribution of plasma can be calculated. This methodology provides a new algorithm for the research of laserinduced plasma, and it also valuable for the understanding the high-powered laser processing process.
Silicon is one of the most important semiconductor materials and the basic material in the field of modern microelectronics, and it has been widely used in microelectronics and photovoltaic industries which are closely related to our daily life. Because the traditional silicon wafer cutting technology has some serious problems such as insufficient cutting accuracy, low efficiency, and serious pollution, the laser processing has been paid more and more attention in silicon wafer cutting applications in about recent fifteen years. Therefore, it is extremely important to develop the laser silicon wafer cutting procedure for the improvement of the laser silicon wafer processing technology. An algorithm named as constrained interpolation profile has been invented in computational fluid dynamics. It is actually a semi-Lagrangian method to solve hyperbolic partial differential equations, and has the advantages of the stable results, compact process, and low dissipation, etc. Focused Gaussian laser beams with the same energy of 200 μJ and pulse widths of 100 fs, 20 ps, and 0.5 ns, respectively, were irradiated on the surface of a silicon wafer. The physical properties of density, temperature, and pressure in both time and space domains were obtained by means of the algorithm of constrained interpolation profile in the laser processing simulation. The mechanisms of laser silicon wafer processing were studied in detail by analyzing the changes in physical properties of silicon material. The conclusions of this paper might be useful in the optimization of a silicon wafer cutting process by the use of a pulsed laser.
Laser processing plays a key role in treating a lot of materials. The mechanism of laser stealth dicing (SD) is based on irradiation of a laser beam which is focused inside the brittle material. The laser beam scans along the predetermined path, so that the characteristics of the interior brittle material can be changed, the stress layer can be therefore formed. Finally, an external force is applied to separate the brittle material. Since only the limited interior region of a wafer is processed by the laser irradiation, the damages and debris contaminants can be avoided during the SD process. SD has the advantages of a high speed for thinner wafers without any chipping, the smooth section without dust and slag, and completely dry process, which has been widely used in large scale integrated circuits and microelectronic manufacturing systems. However, further studies on the simulation analyze and parameter optimization have kept to be rear for SD so far. In this study, an approach named as constrained interpolation profile (CIP) was adopted, which has the advantages of compactness, stability, and low dissipation in computational fluid dynamics compared with other simulation procedures. We have finished a theoretical simulation to obtain the physical features of the temperature, pressure, density of the silicon substrate at different focal depth where a nanosecond pulsed laser is irradiated, then we found a suitable focal depth with a good dicing quality by analyzing these physical features.
Laser drilling has been more and more widely used in laser machining process. Therefore, optimizing the quality of laser drilling becomes extremely important. We know that laser drilling can be achieved by using high power density of a laser. As light waves with different waveforms represent the different energy distributions in time domain, we believe that the quality of laser drilling should be related to the laser waveform. At present, a laser used in the laser processing usually hasthe waveform with a Gaussian or a Lorentzian distribution. In this study, we numerically simulated the punching quality of a pulsed laser with the Gaussian distribution and a pulsed laser with the top-flat distribution (we called it as a square-shaped laser pulse) at the same energy. It mainly refers to the changes of density, temperature, and pressure of the target materials under the same energy for different waveforms. The constrained interpolation profile algorithm has been used to simulate the machining process. Until now, there are few studies on the features of laser drilling with different waveforms in time domain. This paper provides a new method to optimize the quality of laser drilling.
Glass is one of the most important materials in industrial applications because of its high hardness, high thermal stability, and high transparency in the visible band. In general, it is very difficult to process glass with near-infrared, visible, and near-ultraviolet lasers. Physically speaking, the absorption coefficient of the glass sheet is one of the most crucial factors for processing efficiency, and it can be influenced by the temperature of a glass sheet. Therefore, to obtain the optimal processing efficiency, the influence of the temperature on the absorption coefficient should be studied in detail. In this paper, we theoretically and experimentally studied the relationship between the absorption coefficient and the temperature to improve the processing efficiency. A tunable near-ultraviolet Nd:YAG frequency-tripled harmonic laser with the wavelength ranging from 270 to 400 nm was utilized to measure the absorption coefficient, and a Peltier temperature controller was used to heat the glass sheet. It has been demonstrated that controlling the temperature is an efficient method to process the transparent glass sheet.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.