This work reports on development and characterization of an on-chip microfluidic handling system for application in preclinical anti-platelet drug screening. A reciprocating elastomeric micropump/mixer design is presented for use with whole human blood, utilizing flexible structural and actuation properties to manage hemodynamics for an on-chip platelet thrombosis assay on fibrillar collagen. The hemocompatibility of the design is assessed across a range of operational configurations, demonstrating equivalent or superior performance to common microcapillary systems at a range of physiologically relevant shear conditions. Surprisingly efficient mixing phenomena are briefly investigated, validated using dyes within the molecular weight range of common antiplatelet therapies. Finally, a proof-of-concept preclinical application is explored, demonstrating that this prototype can act as a real-time assay of anti-platelet drug pharmacokinetics, compared to an equivalent microcapillary system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.