Infrared images are usually subject to low contrast, edge blurring and a large amount of noise. Aiming at improving the quality of the infrared images, this paper presents a novel adaptive algorithm on infrared image enhancement. Firstly, the input image is decomposed via the nonsubsampled Contourlet transform (NSCT) to achieve the coefficients of subbands at different scales and directions. Next, the coefficients of high frequency are classified into three categories automatically by using an adaptive classification method which analyzes the coefficients in their local neighborhood. After that, a nonlinear mapping function is adopted to modify the coefficients, in order to highlight the edges and suppress the high frequency noise. Finally, the enhanced image is obtained by reconstructing via the above modified coefficients. Experiment results show that the proposed algorithm could effectively enhance image contrast and highlight edges while avoiding the image distortion and noise amplification.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.