An investigation on short-wavelength ablation mechanism of poly(1,4-phenylene ether ether-sulfune) PPEESand poly (1-hexadecene-sulfone) PHDS (Figure 9-10) by EUV radiation is presented. The goal of this work is to evaluate the ablation behavior with respect to the influence of wavelength, fluence and quantum efficiency. Because there is no yet a general EUV ablation theory, data are analyzed in order to underline regularity of the process which can be used in future to detect the scaling laws of the process. The differences with longer wavelengths ablation and EUV one are pointed out and possible applications of EUV ablation are proposed.
An overview of Czech national R&D project HiLASE (High average power pulsed LASEr) is presented. The HiLASE project aims at development of pulsed DPSSL for hi-tech industrial applications. HiLASE will be a user oriented facility with several laser systems with output parameters ranging from a few picosecond pulses with energy of 5 mJ to 0.5 J and repetition rate of 1-100 kHz (based on thin disk technology) to systems with 100 J output energy in nanosecond pulses with repetition rate of 10 Hz (based on multi-slab technology).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.