The Black Hole Explorer (BHEX) mission will enable the study of the fine photon ring structure, aiming to reveal the clear universal signatures of multiple photon orbits and true tests of general relativity, while also giving astronomers access to a much greater population of black hole shadows. Spacecraft orbits can sample interferometric Fourier spacings that are inaccessible from the ground, providing unparalleled angular resolution for the most detailed spatial studies of accretion and photon orbits and better time resolution. The BHEX mission concept provides space Very Long Baseline Interferometry (VLBI) at submillimeter wavelengths measurements to study black holes in coordination with the Event Horizon Telescope and other radio telescopes. This report presents the BHEX engineering goals, objectives and TRL analysis for a selection of the BHEX subsystems. This work aims to lay some of the groundwork for a near-term Explorers class mission proposal.
We present the Black Hole Explorer (BHEX), a mission that will produce the sharpest images in the history of astronomy by extending submillimeter Very-Long-Baseline Interferometry (VLBI) to space. BHEX will discover and measure the bright and narrow “photon ring” that is predicted to exist in images of black holes, produced from light that has orbited the black hole before escaping. This discovery will expose universal features of a black hole’s spacetime that are distinct from the complex astrophysics of the emitting plasma, allowing the first direct measurements of a supermassive black hole’s spin. In addition to studying the properties of the nearby supermassive black holes M87∗ and Sgr A∗ , BHEX will measure the properties of dozens of additional supermassive black holes, providing crucial insights into the processes that drive their creation and growth. BHEX will also connect these supermassive black holes to their relativistic jets, elucidating the power source for the brightest and most efficient engines in the universe. BHEX will address fundamental open questions in the physics and astrophysics of black holes that cannot be answered without submillimeter space VLBI. The mission is enabled by recent technological breakthroughs, including the development of ultra-high-speed downlink using laser communications, and it leverages billions of dollars of existing ground infrastructure. We present the motivation for BHEX, its science goals and associated requirements, and the pathway to launch within the next decade.
The Event Horizon Explorer (EHE) is a mission concept to extend the Event Horizon Telescope via an additional space-based node. We provide highlights and overview of a concept study to explore the feasibility of such a mission. We present science goals and objectives, which include studying the immediate environment around supermassive black holes, and focus on critical enabling technologies and engineering challenges. We provide an assessment of their technological readiness and overall suitability for a NASA Medium Explorer (MIDEX) class mission.
We are building an image slicer integral field unit (IFU) to go on the IMACS wide-field imaging spectrograph on the Magellan Baade Telescope at Las Campanas Observatory, the Reformatting Optically-Sensitive IMACS Enhancement IFU, or ROSIE IFU. The 50.4" x 53.5" field of view will be pre-sliced into four 12.6" x 53.5" sub-fields, and then each subfield will be divided into 21 0.6" x 53.5" slices. The four main image slicers will produce four pseudo-slits spaced six arcminutes apart across the IMACS f/2 camera field of view, providing a wavelength coverage of 1800 Angstroms at a spectral resolution of 2000. Optics are in-hand, the first image slicer is being aluminized, mounts are being designed and fabricated, and software is being written. This IFU will enable the efficient mapping of extended objects such as nebulae, galaxies, or outflows, making it a powerful addition to IMACS.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.