A novel signal processing algorithm for quantifying structural disorder in biological tissue using second harmonic generation (SHG) imaging is described. Both the magnitude and the pattern of disorder in collagenous tissues can be determined with this method. Mathematical models are used to determine the range of disordered states over which the algorithm can be used, because highly disordered biological samples do not generate second harmonic signals. The method is validated by measuring disorder in heated fascicles using SHG and showing that results are significantly correlated with morphometric determination. Applicability of the method to tissue pathology is demonstrated by analysis of a mouse model of intervertebral disk injury. Disks were subjected to tensile or compressive forces in vivo for one week. Structural disorder in the annulus fibrosus was measured by SHG scanning and by standard morphometric analysis. Values for disorder obtained by SHG scanning were significantly correlated with values obtained by morphometry (p<0.001). Quantitation of disorder using SHG offers significant advantages over morphometric determination. Data obtained in this study suggest that this method can be used to discriminate between reversible and irreversible tissue damage.
Collagen possesses a strong second order nonlinear susceptibility; when it is irradiated with intense laser light, some of the reflected and transmitted light will have twice the frequency of the incident beam, a phenomenon known as second harmonic generation (SHG). Polarization modulation of an ultra-short pulse laser beam can be used to simultaneously measure collagen fiber orientation, SHG intensity, and a parameter related to the second order non-linear susceptibility. This technique has made it possible to discriminate among patterns of fibrillar orientation in many tissues. In the present study the role that organizational complexity plays in the relationship between nonlinear optical properties and collagen structure is investigated. As a component of tissues and organs, collagen’s structure and function is inextricably intertwined with that of the many other matrix components; to what extent do these noncollagenous components affect its nonlinear properties? To answer this, we investigated SHG in two different collagenous tissues, liver and cartilage; in addition we looked at the effect of progressive pathological changes in these tissues on SHG. At the other end of the spectrum, we studied collagen organized at the minimal level of complexity necessary for SHG detection: fibrils generated from solutions containing only a single type of collagen. Data obtained from these studies suggest that collagen’s strong nonlinear susceptibility, a property no other biologically significant macromolecule shares to the same degree, may serve as more than the basis of a novel imaging device for soft tissue. Collagen’s nonlinear optical properties in conjunction with its vast capacity for self-initiated conformational change--through self-assembly, site recognition, post-translational modification, and the like -make it an attractive candidate molecule for any of several demanding engineering applications, such as nanopatterning.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.