In this article, we present a model describing the mechanical error stack-up and pointing analysis for primary focus radio arrays and summarize our metrology and simulation results. The mathematical framework of the error model is especially formulated for the Deep Dish Development Array 6-m (D3A6) which is a small interferometric radio telescope being deployed at the Dominion Radio Astrophysical Observatory (DRAO) site. The 3-element D3A6 will serve as a test bed for the upcoming Canadian Hydrogen Observatory and Radio-transient Detector (CHORD) project which will survey the northern sky to measure baryon acoustic oscillations (BAO) observing the 21 cm hyper-fine transition of neutral hydrogen. CHORD will complete similar surveys done by Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) in the southern hemisphere. All the mechanical error modelling and metrology steps presented here will similarly be used and beneficial for the upcoming CHORD array. Using a Monte Carlo analysis pipeline based on this error propagation model, we study if our mechanical requirements should be tighten or relaxed and how the assembly and alignment of the D3A6 should be adjusted. The dishes are made out of fiber glass composites with metal reflectors embedded in them. Vacuum infusion process is used to fabricate the dishes from a precision mold. The mean mold RMS is measured as 0.54 mm RMS. The dish surface mean RMS error is 0.68 mm with a precision of 0.09 mm obtained from the 3 dishes. The mean boresight error is 21.72 arcmin with a precision of 5.44 arcmin. The study presents the metrology methods and errors obtained from the dish fabrication, assembly of the telescope components, alignment of the dishes. The study provides an insight on the errors and their specified requirement towards the development of CHORD array.
The Hydrogen Intensity and Real-time Analysis Experiment (HIRAX) is a radio interferometer array currently in development, with an initial 256-element array to be deployed at the South African Radio Astronomy Observatory Square Kilometer Array site in South Africa. Each of the 6 m, f / 0.23 dishes will be instrumented with dual-polarization feeds operating over a frequency range of 400 to 800 MHz. Through intensity mapping of the 21 cm emission line of neutral hydrogen, HIRAX will provide a cosmological survey of the distribution of large-scale structure over the redshift range of 0.775 < z < 2.55 over ∼15,000 square degrees of the southern sky. The statistical power of such a survey is sufficient to produce ∼7 % constraints on the dark energy equation of state parameter when combined with measurements from the Planck satellite. Additionally, HIRAX will provide a highly competitive platform for radio transient and HI absorber science while enabling a multitude of cross-correlation studies. We describe the science goals of the experiment, overview of the design and status of the subcomponents of the telescope system, and describe the expected performance of the initial 256-element array as well as the planned future expansion to the final, 1024-element array.
This paper describes the design, implementation, and verification of a test-bed for determining the noise temperature of radio antennas operating between 400-800 MHz. The requirements for this test-bed were driven by the HIRAX experiment, which uses antennas with embedded amplification, making system noise characterization difficult in the laboratory. The test-bed consists of two large cylindrical cavities, each containing radio-frequency (RF) absorber held at different temperatures (300K and 77 K), allowing a measurement of system noise temperature through the well-known ‘Y-factor’ method. The apparatus has been constructed at Yale, and over the course of the past year has undergone detailed verification measurements. To date, three preliminary noise temperature measurement sets have been conducted using the system, putting us on track to make the first noise temperature measurements of the HIRAX feed and perform the first analysis of feed repeatability.
The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) is a planned interferometric radio telescope array that will ultimately consist of 1024 close packed 6 m dishes that will be deployed at the SKA South Africa site. HIRAX will survey the majority of the southern sky to measure baryon acoustic oscillations (BAO) using the 21 cm hyperfine transition of neutral hydrogen. It will operate between 400-800 MHz with 391 kHz resolution, corresponding to a redshift range of 0:8 < z < 2:5 and a minimum Δz/z of ~0.003 (frequency resolution 500 < R < 1000). One of the primary science goals of HIRAX is to constrain the dark energy equation of state by measuring the BAO scale as a function of redshift over a cosmologically significant range. Achieving this goal places stringent requirements on the mechanical and optical design of the HIRAX instrument which are described in this paper. This includes the simulations used to optimize the mechanical and electromagnetic characteristics of the instrument, including the dish focal ratio, receiver support mechanism, and instrument cabling. As a result of these simulations, the dish focal ratio has been reduced to 0.23 to reduce inter-dish crosstalk, the feed support mechanism has been redesigned as a wide (35 cm diam.) central column, and the feed design has been modified to allow the cabling for the receiver to pass directly along the symmetry axis of the feed and dish in order to eliminate beam asymmetries and reduce sidelobe amplitudes. The beams from these full-instrument simulations are also used in an astrophysical m-mode analysis pipeline which is used to evaluate cosmological constraints and determine potential systematic contamination due to physical non-redundancies of the array elements. This end-to-end simulation pipeline was used to inform the dish manufacturing and assembly specifications which will guide the production and construction of the first-stage HIRAX 256-element array.
High precision calibration is essential for the new generation of radio interferometers looking for Baryon Acoustic Oscillation signatures in neutral hydrogen emissions which is a signal buried in foregrounds. Yet, differences in instrument design and non-redundancies in the subsystems consisting such instruments can pose great challenges to proper calibration. For instance, Canadian Hydrogen Intensity Mapping Experiment (CHIME) offers a large instantaneous field of view with fast mapping speed with a sensitivity equivalent to a single dish in terms of total collecting area. However, the calibration of its 1000+ individual receivers poses major obstacle to harness the full capability of the new technology. In future instruments, it is planned to use redundancy at the level required for science experiments (typically below 1%). Although, this idea is against the traditional knowledge of having the radio receivers accurate to 1/20th of the observed wavelength, we plan to meet this goal by solving the redundancy issue in the front-end subsystems using precise metrology and alignment methods. To achieve this goal, we work on a 2-element interferometer called Deep Dish Development Array (D3A), with a targeted precision of 1/1000th of a wavelength at 300 MHz, located at Dominion Radio Astrophysical Observatory, located in Penticton, BC, Canada. The D3A will serve as test bed for dish prototyping, composite dish repeatability, antennae back ends which can be scaled to larger arrays without sacrificing the precision. The two dishes are made out of fiber glass composite and measured in the shop condition and in the field after fabrication. The relative pointing accuracy was obtained as 0.02°. The elevation axes of the dishes were placed in East-West direction within 0.04° of error. The surface RMS error was obtained as 0.389 mm which meets the 1/1000th of observation wavelength. RMS error due to temperature variation and assembly error on the dishes were obtained at 1 mm. This article presents the metrology principles applied to obtain the results and challenges. The tests performed in D3A will be implemented in Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) and the Canadian Hydrogen Observatory and Radio Transient Detector (CHORD).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.