Breast cancer is the dominant cancer among women as it accounts for about one-quarter of all cancer cases in females. The digitized images of Hematoxylin and Eosin (H&E) stained slides of breast cancer specimens carry valuable diagnostic information. However, inspecting these slides manually is a non-trivial task prone to subjective interpretation. Digital pathology (DP) and artificial intelligence (AI) open an opportunity for objective interpretation of the image data. It is challenging to automate the segmentation process in the whole slide images due to the visual complexity of tissue appearance without the need for tedious and time-consuming fine annotations. Many algorithms classify the tissue regions into different types instead of segmenting them, as the classification algorithms require coarse annotations that are easier to acquire. In this paper, we propose a new segmentation framework that combines the simple non-iterative clustering algorithm with a standard convolutional neural network (CNN) classifier to segment whole slide images into different tissue types. In addition, a graph-based post-processing step is applied to improve the framework segmentation performance further. The results show promising improvement to the CNN classifier based coarse segmentation, which would give better feasibility to quantify and study tissues’ mutual relationships.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.