There are many implementations of optical correlators based on LCD-SLM of different types currently available. Another kind of SLM, DMD-SLM, also is of great interest for use in optical correlators. The main advantage of this type of SLM relative to LCD-SLM is its very high operation speed. We developed and implemented the setup of optical correlator in which an input object is illuminated by spatially incoherent light and the filter-memory is dynamically displayed on the DMD-SLM. Experiments to estimate the impact of DMD manufacture errors on the formation of the correlation signal were performed. In these experiments it was found that to obtain a good result it is necessary to determine the size and position of the most flat area of DMD matrix, and to output the holograms on this area only. This limitation is caused by the fact that the surface of the matrix cannot be considered as perfectly flat, and using of its entire area for filter displaying will cause deterioration of the system resolution. The experiments on recognition of test objects in quasi-monochromatic spatially incoherent light on the implemented setup were performed. In these experiments, when the coincidence of the input and reference objects took place, localized correlation peak was observed. This fact demonstrates the successful objects recognition in such correlator.
In this paper, the optical quality of micromirror DMD spatial light modulator (SLM) is evaluated and its applicability as an output device for holographic filters in dispersive correlators is analyzed. The possibility of using of DMD SLM extracted from consumer DLP-projector was experimentally evaluated by displaying of Fourier holograms. Software for displaying of holograms was developed. Experiments on holograms reconstruction was conducted with a different number of holograms pixels (and different placement on SLM). Reduction of number of pixels of output hologram (i.e. size of minimum resolvable element) led to improvement of reconstructed image quality.
The evaluation shows that not every DMD-chip has acceptable optical quality for its application as display device for Fourier holograms. It was determined that major factor of reconstructed image quality degradation is a curvature of surface of SLM or its safety glass. Ranging hologram size allowed to estimate approximate size of sufficiently flat area of SLM matrix. For tested SLM it was about 1.5 mm. Further hologram size increase led to significant reconstructed image quality degradation.
Developed and applied a technique allows to quickly estimate maximum size of holograms that can be displayed with specific SLM without significant degradation of reconstructed image. Additionally it allows to identify areas on the SLM with increased curvature of the surface.
KEYWORDS: Digital holography, Spatial light modulators, Holograms, Cameras, Holography, Digital video recorders, Video, Digital recording, Optical resolution, Digital holography, Digital cameras, 3D image reconstruction, Digital imaging, Liquid crystal on silicon
Digital holography is technique that allows to reconstruct information about 2D-objects and 3D-scenes. This is achieved by registration of interference pattern formed by two beams: object and reference ones. Pattern registered by the digital camera is processed. This allows to obtain amplitude and phase of the object beam. Reconstruction of shape of the 2D objects and 3D-scenes can be obtained numerically (using computer) and optically (using spatial light modulators - SLMs). In this work camera Megaplus II ES11000 was used for digital holograms recording. The camera has 4008 × 2672 pixels with sizes of 9 μm × 9 μm. For hologram recording, 50 mW frequency-doubled Nd:YAG laser with wavelength 532 nm was used. Liquid crystal on silicon SLM HoloEye PLUTO VIS was used for optical reconstruction of digital holograms. SLM has 1920 × 1080 pixels with sizes of 8 μm × 8 μm. At objects reconstruction 10 mW He-Ne laser with wavelength 632.8 nm was used. Setups for digital holograms recording and their optical reconstruction with the SLM were combined as follows. MegaPlus Central Control Software allows to display registered frames by the camera with a little delay on the computer monitor. The SLM can work as additional monitor. In result displayed frames can be shown on the SLM display in near real-time. Thus recording and reconstruction of the 3D-scenes was obtained in real-time. Preliminary, resolution of displayed frames was chosen equaled to the SLM one. Quantity of the pixels was limited by the SLM resolution. Frame rate was limited by the camera one. This holographic video setup was applied without additional program implementations that would increase time delays between hologram recording and object reconstruction. The setup was demonstrated for reconstruction of 3D-scenes.
The majority of existing methods of optical encryption use not only light intensity distribution, easily registered with photosensors, but also its phase distribution. This provides best encryption strength for fixed quantities of elements and phase levels in a mask. Downsides are holographic registration scheme used in order to register not only light intensity distribution but also its phase distribution and speckle noise occurring due to coherent illumination. That factors lead to very poor decryption quality when it comes from computer simulations to optical implementations.
Method of optical encryption with spatially incoherent illumination does not have drawbacks inherent to coherent systems, however, as only light intensity distribution is considered, mean value of image to be encrypted is always above zero which leads to intensive zero spatial frequency peak in image spectrum. Therefore, in case of spatially incoherent illumination, image spectrum, as well as encryption key spectrum, cannot be white. If encryption is based on convolution operation, no matter coherent light used or not, Fourier spectrum amplitude distribution of encryption key should overlap Fourier spectrum amplitude distribution of image to be encrypted otherwise loss of information is unavoidable.
Another factor affecting decrypted image quality is original image spectrum. Usually, most part of image energy is concentrated in area of low frequencies. Consequently, only this area in encrypted image contains information about original image, while other areas contain only noise. We propose to use additional encoding of input scene to increase size of the area containing useful information. This provides increase of signal-to-noise ratio in encrypted image and consequentially increases quality of decrypted images.
Results of computer simulations of test images optical encryption with spatially incoherent illumination and additional input amplitude masks are presented.
We address the recognition problem of grayscale images of object subjected to out-of-plane rotation distortion. We compare filter realization as computer generated hologram and filter projection on modulator domain. Our study results of the filter discriminating characteristic analysis are shown. The results of the filter implementation modeling in 4-f correlator and the initial experimental result are represented.
Dispersive correlators have been proposed previously for solving problems of recognition of radiating objects in real time. Correlation signals are formed by radiation of analyzed object during its interaction with spatial filter. Most difficult recognition case is when spectrum of input radiation is continuous (non-line spectrum). Method of synthesis of Fourier holograms for their using in dispersive correlators as spatial filters is developed in this work. Spectral ranges, in which values of components of radiation are greater than predetermined threshold for reference spectrum, were determined. Entrance slit used as reference object. Next, spatial image of spectrum, which is a set of images of object (slit), was formed. Amount of object images and its sizes are determined with selected wavelength ranges. Fourier hologram of this image was computer synthesized and had 2048x2048 pixels. Then this hologram was binarized and printed using laser imagesetter with 100 dots/mm resolution. In this work the scheme of the dispersive correlator with single Fourier-objective was used. Correlation signals for different spectra were experimentally formed. LEDs, including RGB-LED with ability of dynamically changing of composition of radiation spectrum, were used as radiation sources. Post-processing operations, which provide independence of recognition results from radiation source power and holograms diffraction efficiency, were defined. Three methods of normalization of correlation signal for identification signal obtaining were experimentally tested and compared. These methods are normalization to radiation power in zero, first, and both of these diffraction orders. Experimental results on identification of test sources with non-line radiation spectra are obtained. They show successful recognition of used LED sources of different colors. Average ratio of spectra coincidence signal to mismatch signal was 4.6 at relative spectral resolution of used setup equaled to 0.004.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.