Low loss optical waveguides are the key component for the fabrication of more complex integrated optics devices. In most works related to femtosecond laser written waveguides, the values presented give results at a single wavelength or in a narrow wavelength band; but some applications in optical sensing, for example, would benefit from waveguides having good propagation properties in a larger wavelength range. This paper presents results that allow one to gain insight into the major loss mechanisms present in laser written waveguides in two different types of glasses (fused silica and Eagle 2000 glass) and the dependence of those on the fabrication parameters. Finally, an example of application of broadband operating waveguides is given.
Long Period Fibre Gratings (LPFGs) were fabricated by femtosecond (fs) laser direct writing in a standard single-mode fibre (SMF-28e) to measure variations in the surrounding refractive index (SRI). The sensing sensitivity of these structures was optimized with the deposition of homogeneous thin layers of titanium dioxide (TiO2) by physical vapour deposition (PVD) process. A set of LPFGs were coated with different thickness layers of TiO2, and the spectral features were monitored for different SRI solutions. The wavelength shift and the optical power variation of the LPFG minimum attenuation band were measured achieving sensitivities of ~570 nm/RIU at using SRI near to 1.3600 in the case of the LPFG coated with 60 nm of TiO2, a 10-fold increase over the corresponding for a bare LPFG. For SRI values higher than the cladding refractive index, a sensitivity over ~3000 nm/RIU was determined for 30 nm of TiO2 thick film, a region where the bare LPFGs are useless. For 30 nm of TiO2, the optical power variation follows a quasi-linear function of the SRI, with a range of ~10 dB. Moreover, values as high as 50 and 120 dB/RIU at 1.3200 and 1.4200, respectively, can be obtained by choosing the proper film thickness. Preliminary studies revealed that coating fs-laser direct writing LPFGs with titanium dioxide improves their performance.
Biogenic amines, such as putrescine are potential indicators of food storage condition and deterioration. The real time measurement of their concentration in food may become an important method of food control. It was found that putrescine diffuses through a thin layer made from a solution of Poly(ethylene-co-vinyl acetate) (PEVA) and maleic anhydride. Poly(ethylene-co-vinyl acetate) is a common non-chlorinated vinyl capable to adsorb specific analytes as putrescine which upon diffusion, reversibly binds to the maleic anhydride causing the polymer swelling resulting in spectral changes from the optical point of view. Long Period Fiber Gratings coated with 30 nm titanium dioxide, a high refractive index material used to increase the intrinsic sensitivity to the external refractive index, were overcoated with a thin layer of maleic anhydride doped Poly(ethylene-co-vinyl acetate). When exposed to solutions containing small concentrations of putrescine the resonant band corresponding to the LP1,6 cladding mode was found to move to shorter wavelengths. The observed blue shift corresponds to the increasing concentration of putrescine in the fiber sensor structure. Further work is being carried out to improve the sensitivity and the limit of detection of the sensing system as well as to increase range of operation, which is presently limited to 0.3 to 0.5 M.
Optical fibre Fabry-Perot interferometers (FPIs) composed by different ultracompact size cavities were fabricated in SMF-28 fibers by using femtosecond (fs) laser micromachining assisted with hydrofluoric (HF) acid. This is made possible due to the high spatial resolution obtained from a non-linear absorption process triggered by the fs-laser exposure. The proposed structures consist of refractive index modified areas written longitudinally from bottom to top by a fs-laser beam that is focused with a 100× oil immersion lens. Then, the inscribed fiber was immersed in a 10 % HF acid solution for 105 minutes. Different FPI structures were developed in the fiber core region, following the same protocol as before, resulting in single open cavities with optical paths from 15 μm to ~ 23 μm length. Inline dual cavities, each with the same optical path but separated by ~ 8 μm length of unmodified fibre core, and a 23 μm wide single FPI cavity followed by an 8000 μm fibre optic cleaved facet were also fabricated. This last configuration results on a convolution of multiple interferences with high and low frequencies capable to monitor different parameters. All the configurations were tested to gas pressure variation and when submitted to different controlled gaseous environments, namely 100% of N2 and 50 % of CH4/N2 achieving sensitivities in the order of 4 nm/MPa and 4.8 nm/MPa, respectively, in pressure range 0-1 MPa with self-temperature compensation. In conclusion, we presented the simultaneous measurement of gas pressure and temperature in the case of the single FPI cavity followed by an 8000 μm fibre optic cleaved facet. Given the preliminary results presented, further research is necessary to improve the performance of such FPIs sensor, for instance, optimization of the cavities sizes for achieving refractive index measurements is still to be done, as well as a more thorough optical characterization.
The fabrication of optical waveguides with femtosecond laser direct writing is reported in two materials, Suprasil1 and Eagle2000. The influence of typical fabrication parameters, such as pulse energy and scan velocity, on the waveguide’s spectral characteristics is explored from 500 to 1700 nm. Tests conducted in Suprasil1 evidence a strong presence of Rayleigh scattering, hindering the production of low-loss waveguides at short wavelengths. On the other hand, optical waveguides fabricated in Eagle2000 exhibited lower insertion losses at short wavelengths, enabling the fabrication of low-loss broadband optical waveguides with a two order of magnitude higher scan velocity when compared with Suprasil1.
A Fabry-Pérot interferometer was fabricated inside a fused silica substrate through femtosecond laser micromachining. The influence of the waveguide’s writing parameters on the measured signal’s quality was studied for an interferometer with a 27-μm wide cavity. Optimal signal-to-noise ratio and fringe visibility were obtained for waveguides written at 75 nJ and 50 μm/s. The same device was characterized with different refractive index liquids, and a maximum sensitivity of 1181.4±23.6 nm/RIU was obtained in the index range of 1.2962 to 1.3828 (at 1550 nm) for the spectral order 𝑚 = 46.
In this work, 3D printing is explored as a solution for fast prototyping of optical fiber sensors with applications in power transformers. Two different sensing structures were evaluated using finite element method (FEM) analysis and were fabricated using 3D printing. The printed structures are composed by acrylonitrile butadiene styrene (ABS), a common thermoplastic polymer used in 3D printing. Attaching a fiber Bragg grating (FBG) to each structure, frequency measurements were successfully obtained for values between 20 and 250 Hz.
A femtosecond laser direct writing system was developed to explore the fabrication of periodic structures in optical fibers. The possibility to write type I first- and second-order Bragg gratings in the same single-mode fiber (SMF-28e), with reflectivities of 99.6 % and 59.3 %, respectively, is presented. The fabrication of structures (waveguides and grating) in a coreless and in a SMF-28e fiber was first demonstrated, and the gratings were then exposed to a thermal annealing up to 1000°C. The FBG inscribed in the SMF-28e fiber presents thermal stability at temperatures of 800 °C and a temperature sensitivity of 14.34 pm/°C was determined.
Power transformers are at the core of power transmission systems. The occurrence of system failure in power transformers can lead to damage of adjacent equipment and cause service disruptions. Structural and electrical integrity assessment in real time is of utter importance. Conventional techniques, typically electrical sensors or chemical analysis, present major drawbacks for real-time measurements due to high electromagnetic interference or for being time-consuming. Optical fiber sensors can be used in power transformers, as they are compact and immune to electromagnetic interferences. In this work, an optical fiber sensor composed by 2 fiber Bragg gratings, attached in a cantilever structure was explored. The prototype was developed with a 3D printer using a typical filament (ABS) that enable a fast and low-cost prototyping. The response of the sensor to vibration was tested using two different vibration axes for frequencies between 10 and 500 Hz. Oil compatibility was also studied using thermal aging and electrical tests. The studies shown that ABS is compatible with the power transformer mineral oil, but the high working temperatures may lead to material creeping, resulting in permanent structural deformation.
It is presented an optical fiber sensing system projected to operate in the demanding conditions associated with coal waste piles in combustion. Distributed temperature measurement and spot gas sensing are requirements for such a system. A field prototype has been installed and is continuously gathering data, which will input a geological model of the coal waste piles in combustion aiming to understand their dynamics and evolution. Results are presented on distributed temperature and ammonia measurement, being noticed any significant methane emission in the short time period considered. Carbon dioxide is also a targeted gas for measurement, with validated results available soon. The assessment of this technology as an effective and reliable tool to address the problem of monitoring coal waste piles in combustion opens the possibility of its widespread application in view of the worldwide presence of coal related fires.
An experimental setup has been developed for different gas species sensing based on the Wavelength Modulation Spectroscopy (WMS) principle. The target is the measurement of ammonia, carbon dioxide and methane concentrations. The WMS is a rather sensitive technique for detecting atomic/molecular species presenting the advantage that it can be used in the near-infrared region using optical telecommunications technology. In this technique, the laser wavelength and intensity are modulated applying a sine wave signal through the injection current, which allows the shift of the detection bandwidth to higher frequencies where laser intensity noise is reduced. The wavelength modulated laser light is tuned to the absorption line of the target gas and the absorption information can be retrieved by means of synchronous detection using a lock-in amplifier, where the amplitude of the second harmonic of the laser modulation frequency is proportional to the gas concentration. The amplitude of the second harmonic is normalised by the average laser intensity and detector gain through a LabVIEW® application, where the main advantage of normalising is that the effects of laser output power fluctuations and any variations in laser transmission, or optical-electrical detector gain are eliminated. Two types of sensing heads based on free space light propagation with different optical path length were used, permitting redundancy operation and technology validation.
The combustion of coal wastes resulting from mining is of particular environmental concern and therefore the importance of the proper management involving real-time assessment of their status and identification of probable evolution scenarios is recognized. Continuous monitoring of combustion temperature and emission levels of certain gases opens the possibility to plan corrective actions to minimize their negative impact in the surroundings. Optical fiber technology is well-suited to this purpose and in this work it is described the main attributes of a fiber optic sensing system projected to gather data on distributed temperature and gas emission in these harsh environments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.