Space observatories have many advantages over ground-based telescopes. However, constructing and launching large space telescopes remains a significant challenge. A solution to this problem lies in autonomous, in-space assembly. To gain benefits from efficiencies of scale and mass production, a modular telescope assembled in space can be constructed from identical mirror segments. These identical segments must then be deformed to an appropriate shape in space. This work examines the optical feasibility of such a project, using a 31 meter Ritchey- Chrétien telescope composed of about 1,000 1-m mirrors as a case study. In particular, this work examines the shape of the telescope optics through Zernike decomposition and computes the physical optics propagation of such a system to analyze the resultant PSF with simulation in Zemax OpticStudio.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.