We report a digital image refocusing framework in fluorescence microscopy (termed “Deep-Z”), where a deep neural network is trained to virtually-refocus a 2D fluorescence image onto user-defined 3D surfaces. Using Deep-Z, we demonstrated 3D reconstruction of C. elegans neuronal activity from a 2D movie, digitally increasing the depth-of-field by 20-fold. We also demonstrated digital correction of sample drift, tilt and other image aberrations, all performed after the acquisition of a single image. Deep-Z also permits cross-modality virtual refocusing, where a single 2D wide-field image can be digitally refocused to match a confocal microscopy image captured at a different sample plane.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.