Photonic Crystal Fibers represent a good platform for the development of sensitive and cheap sensors for the detection of protein and DNA sequence. The holes running along the fiber allows the infiltration of biological substances and for biological layers to attach on the air-dielectric interfaces. In addition, the presence of a hollow core can further increase the infiltration feasibility and the sensor sensitivity.
Recently, the possibility in using hollow core tube lattice fibers (HC-TLFs) for label-free DNA detection have been numerically investigated. The sensing is based on the waveguiding mechanism, that is inhibited-coupling which makes the HC-TLF transmission properties particularly sensitive to the thickness of the glass struts composing the microstructured cladding of those fibers. The molecular interactions between the surface of the glass and the target to be detected results in a generation of a biological layer which modifies the strut thickness and thus the fiber transmission properties.
The aim of the present work is to experimentally demonstrate that HC-TLF can be successfully used as bio sensor for proteins. After a functionalization of the silica surface through a solution of aptes, a layer of biotin was deposited on inner surfaces of the fiber. The fiber was than infiltrated with a solution containing streptavidin and an additional bio-layer is deposited on the surfaces. The experimental results demonstrated a red shift of the entire fiber transmission spectrum of about 7 nm corresponding to an additional bio-layer with thickness of 6.45 nm which is fully compatible with the size of streptavidin molecules of about 6nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.