Hyperspectral (HS) imaging (HSI) is a novel technique that allows a better understanding of materials, being an improvement respect to other imaging modalities in multiple applications. Specifically, HSI technology applied to breast cancer histology, could significantly reduce the time of tumor diagnosis at the histopathology department. First, histological samples from twelve different breast cancer patients have been prepared and examined. Second, they were digitally scanned, using RGB (Red-Green-Blue) whole-slide imaging, and further annotated at cell level. Then, the annotated regions were captured with an HS microscopic acquisition system at 20× magnification, covering the 400-1000 nm spectral range. The HS data was registered (through synthetic RGB images) to the whole-slide images, allowing the transfer of accurate annotations made by pathologists to the HS image and extract each annotated cell from such image. Then, both spectral and spatial-spectral classifications were carried out to automatically detect tumor cells from the rest of the coexisting cells in the breast tissue (fibroblasts and lymphocytes). In this work, different supervised classifiers have been employed, namely kNN (k-Nearest-Neighbors), Random Forest, DNN (Deep Neural Network), Support Vector Machines (SVM) and CNN (Convolutional Neural Network). Test results for tumor cells vs. fibroblast classification show that the kNN performed with the best sensitivity/specificity (64/52%) trade-off and the CNN achieved the best sensitivity and AUC results (96% and 0.91, respectively). Moreover, at the tumor cells vs. lymphocyte classification, kNN also provided the best sensitivity-specificity ratio (58.47/58.86%) and an F1-score of 74.12%. The SVM algorithm also provided a high F-score result (70.38%). In conclusion, several machine learning algorithms provide promising results for cell classification in breast cancer tissue and so, future work must include these discoveries for faster cancer diagnosis.
Accurate identification of tumor boundaries during brain cancer surgery determines the quality of life of the patient. Different intraoperative guidance tools are currently employed during the resection tumor but having several limitations. Hyperspectral imaging (HSI) is arising as a label-free and non-ionizing technique that could assist neurosurgeons during surgical procedures. In this paper, an analysis between in-vivo and ex-vivo human brain tumor samples using HSI has been performed to evaluate the correlation between both types of samples. Spectral ratios of the oxygenated and deoxygenated hemoglobin were employed to distinguish between normal tissue, tumor tissue and blood vessels. A database composed by seven in-vivo and fourteen ex-vivo hyperspectral images obtained from seven different patients diagnosed with glioblastoma Grade IV, metastatic secondary breast cancer, meningioma Grade I and II, and astrocytoma (glioma) Grade II. 44,964 pixels labeled pixels were employed in this work. The proposed method achieved discrimination between different tissue types using the proposed spectral ratio. Comparison between in-vivo and ex-vivo samples indicated that ex-vivo samples generate higher hemoglobin ratios. Moreover, vascular enhanced maps were generated using the spectral ratio, targeting real-time intraoperative surgical assistance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.