We demonstrate Endoscopic Optical Coherence Elastography (Endo-OCE) imaging of bronchus in an artificial breathing lung model that can breathe at 10 times per minute with a tidal volume of 500 ml. A 1.2 mm motorized catheter was delivered to the distal bronchus via the working channel of a clinical bronchoscope. Endo-OCE images was acquired at 3000 frames/s during the exhalation of the "breath". The results show that the passive breathing of the lung model can induce sufficient tissue deformation (strain) for Endo-OCE imaging. The lung model can be a useful tool to validate the Endo-OCE technology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.