M. Talvard, V. Revéret, Y. Le-Pennec, Ph. André, A. Arnaud, L. Clerc, C. de Breuck, C. Delisle, E. Doumayrou, L. Duband, D. Dubreuil, L. Dumaye, E. Ercolani, P. Gallais, M. Lortholary, J. Martignac, J. Relland, L. Rodriguez, F. Roussel, F. Schuller, F. Visticot
We present the latest results obtained with the wide-field submillimeter camera ArTeMiS that is operating on APEX since July 2013. This camera is presently equipped with 1870 pixels at 350 μm and 800 pixels at 450 μm simultaneously. ArTéMiS is a PI-camera open to the ESO and Swedish community. It has already taken a part in the 2016-2017 scientific results of APEX. So far, it offers the best performance in terms of mapping speed at 350 and 450 μm in the southern hemisphere.
Major improvements of the APEX telescope have been achieved at the end of 2017, requiring a complete removal of the instruments in the C-Cabin. In the meantime, the ArTeMiS camera has been kept safe at the ALMA Operations Support Facility (OSF) building. We took advantage of this re-installation to improve a bit more the optical coupling of detectors. We present here the present status of the camera.
Since APEX operation is now guaranteed until the end of 2022, our prospects are to install in time new detectors presently developed at CEA/Léti in the frame of R&D developments made for the future SPICA space mission. Those detectors, which have new polarization capabilities, are also presented.
Together with the development of the Large APEX Bolometer Camera (LABOCA) for the Atacama Pathfinder
Experiment (APEX), a new data reduction package has been written. This software naturally interfaces with
the telescope control system, and provides all functionalities for the reduction, analysis and visualization of
bolometer data. It is used at APEX for real time processing of observations performed with LABOCA and other
bolometer arrays, providing feedback to the observer. Written in an easy-to-script language, BoA is also used
offline to reduce APEX continuum data. In this paper, the general structure of this software is presented, and
its online and offline capabilities are described.
An enhanced version of the ”Polarimeter für bolometer Kameras” (PolKa) has been installed on the APEX telescope (Atacama Pathfinder EXperiment) in October 2009, to work in combination with LABOCA (the Large APEX Bolometer Camera). This polarimeter was included in the design of LABOCA’s optics from the beginning and it is now going through a commissioning and science verification phase. The combination of PolKa, LABOCA and APEX provides superior capabilities in mapping the polarization of the continuum at submillimeter wavelengths. We present here some preliminary results of the last commissioning run.
A new facility instrument, the Large APEX Bolometer Camera (LABOCA), developed by the Max-Planck-Institut f&diaeru;r Radioastronomie (MPIfR, Bonn, Germany), has been commissioned in May 2007 for operation on the Atacama Pathfinder Experiment telescope (APEX), a 12 m submillimeter radio telescope located at 5100 m altitude on Llano de Chajnantor in northern Chile. For mapping, this 295-bolometer camera for the 870 micron atmospheric window operates in total power mode without wobbling the secondary mirror. One LABOCA beam is 19 arcsec FWHM and the field of view of the complete array covers 100 square arcmin. Combined with the high efficiency of APEX and the excellent atmospheric transmission at the site, LABOCA offers unprecedented capability in large scale mapping of submillimeter continuum emission. Details of design and operation are
presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.