With sub-microarcsecond angular accuracy, the Theia telescope will be capable of revealing the architectures of nearby exoplanetary systems down to the mass of Earth. This research addresses the challenges inherent in space astrometry missions, focusing on focal plane calibration and telescope optical distortion. We propose to assess the future feasibility of large-format detectors (50 to 200 megapixels) in a controlled laboratory environment. The aim is to improve the architecture of the focal plane while ensuring that specifications are met. The use of field stars as metrological sources for calibrating the optical distortion of the field may help to constrain telescope stability. The paper concludes with an attempt to confirm in the laboratory the performance predicted by simulations. We will also address the possibility of using such techniques with a dedicated instrument for the Habitable World Observatory.
High-precision astrometry well beyond the capacities of Gaia will provide a unique way to achieve astrophysical breakthroughs, in particular on the nature of dark matter, and a complete survey of nearby habitable exoplanets. In this contribution, we present the scientific cases that require a flexibly-pointing instrument capable of high astrometric accuracy and we review the best mission profiles that can achieve such observations with the current space technology as well as within the boundary conditions defined by space agencies. We also describe the way the differential astrometric measurement is made using reference stars within the field. We show that the ultimate accuracy can be met without drastic constrains on the telescope stability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.